On stable noetherian rings
HTML articles powered by AMS MathViewer
- by Zoltán Papp
- Trans. Amer. Math. Soc. 213 (1975), 107-114
- DOI: https://doi.org/10.1090/S0002-9947-1975-0393120-1
- PDF | Request permission
Abstract:
A ring R is called stable if every localizing subcategory of $_R{\text {M}}$ is closed under taking injective envelopes. In this paper the stable noetherian rings are characterized in terms of the idempotent kernel functors of $_R{\text {M}}$ (O. Goldman [5]). The stable noetherian rings, the classical rings (Riley [11]) and the noetherian rings “with sufficiently many two-sided ideals” (Gabriel [4]) are compared and their relationships are studied. The close similarity between the commutative noetherian rings and the stable noetherian rings is also pointed out in the results.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223, DOI 10.1007/978-1-4684-9913-1
- John A. Beachy, On maximal torsion radicals, Canadian J. Math. 25 (1973), 712–726. MR 327813, DOI 10.4153/CJM-1973-073-2
- Spencer E. Dickson, Decomposition of modules. I. Classical rings, Math. Z. 90 (1965), 9–13. MR 184974, DOI 10.1007/BF01112047
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- Oscar Goldman, Rings and modules of quotients, J. Algebra 13 (1969), 10–47. MR 245608, DOI 10.1016/0021-8693(69)90004-0
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135
- Günter Krause, On fully left bounded left noetherian rings, J. Algebra 23 (1972), 88–99. MR 308188, DOI 10.1016/0021-8693(72)90047-6
- Joachim Lambek and Gerhard Michler, The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra 25 (1973), 364–389. MR 316487, DOI 10.1016/0021-8693(73)90051-3
- L. Lesieur and R. Croisot, Algèbre noethérienne non commutative, Mémor. Sci. Math., Fasc. CLIV, Gauthier-Villars & Cie, Éditeur-Imprimeur-Libraire, Paris, 1963 (French). MR 0155861
- Gerhard Michler, Goldman’s primary decomposition and the tertiary decomposition, J. Algebra 16 (1970), 129–137. MR 268218, DOI 10.1016/0021-8693(70)90045-1
- John A. Riley, Axiomatic primary and tertiary decomposition theory, Trans. Amer. Math. Soc. 105 (1962), 177–201. MR 141683, DOI 10.1090/S0002-9947-1962-0141683-4
- D. W. Sharpe and P. Vámos, Injective modules, Cambridge Tracts in Mathematics and Mathematical Physics, No. 62, Cambridge University Press, London-New York, 1972. MR 0360706
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 107-114
- MSC: Primary 16A46
- DOI: https://doi.org/10.1090/S0002-9947-1975-0393120-1
- MathSciNet review: 0393120