The residue calculus in several complex variables
HTML articles powered by AMS MathViewer
- by Gerald Leonard Gordon
- Trans. Amer. Math. Soc. 213 (1975), 127-176
- DOI: https://doi.org/10.1090/S0002-9947-1975-0430297-3
- PDF | Request permission
Abstract:
Let W be a complex manifold and V an analytic variety. Then homology classes in $W - V$ which bound in V, called the geometric residues, are studied. In fact, a long exact sequence analogous to the Thom-Gysin sequence for nonsingular V is formed by a geometric construction. A geometric interpretation of the Leray spectral sequence of the inclusion of $W - V \subset V$ is also given. If the complex codimension of V is one, then one shows that each cohomology class of $W - V$ can be represented by a differential form of the type $\theta \wedge \lambda + \eta$ where $\lambda$ is the kernel associated to V and $\theta |V$ is the Poincaré residue of this class.References
- Aldo Andreotti and Theodore Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713–717. MR 177422, DOI 10.2307/1970034
- C. H. Clemens Jr., Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities, Trans. Amer. Math. Soc. 136 (1969), 93–108. MR 233814, DOI 10.1090/S0002-9947-1969-0233814-9
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. (Vol. II by R. Courant.). MR 0140802
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551, DOI 10.1007/BF02684692
- Gerald Leonard Gordon, Differential of the second kind, Fonctions analytiques de plusieurs variables et analyse complexe (Colloq. Internat. CNRS, No. 208, Paris, 1972) “Agora Mathematica”, No. 1, Gauthier-Villars, Paris, 1974, pp. 53–64. MR 0466145
- Gerald Leonard Gordon, A Poincaré duality type theorem for polyhedra, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 4, 47–58 (English, with French summary). MR 339141, DOI 10.5802/aif.434
- Phillip A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228–296. MR 258824, DOI 10.1090/S0002-9904-1970-12444-2
- Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460–495; 90 (1969), 496–541. MR 0260733, DOI 10.2307/1970746
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547 —, Sub-analytic sub-sets (to appear).
- W. V. D. Hodge and M. F. Atiyah, Integrals of the second kind on an algebraic variety, Ann. of Math. (2) 62 (1955), 56–91. MR 74082, DOI 10.2307/2007100
- M. Herrera and D. Lieberman, Residues and principal values on complex spaces, Math. Ann. 194 (1971), 259–294. MR 296352, DOI 10.1007/BF01350129 M. Lejeune and B. Teissier, Quelques calculs utiles pour la résolution des singularitiés, Seminar at École Polytechnique, 1972.
- Jean Leray, Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III), Bull. Soc. Math. France 87 (1959), 81–180 (French). MR 125984, DOI 10.24033/bsmf.1515 J. Milnor, Differential structures, Mimeographed notes, Princeton, 1961. —, Differentiable manifolds which are homotopy spheres, Mimeographed notes, Princeton, 1959.
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- B. G. Moĭšezon, Algebraic homology classes on algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 225–268 (Russian). MR 0213351
- David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22. MR 153682, DOI 10.1007/BF02698717
- Peter Orlik and Philip Wagreich, Isolated singularities of algebraic surfaces with C$^{\ast }$ action, Ann. of Math. (2) 93 (1971), 205–228. MR 284435, DOI 10.2307/1970772
- Frédéric Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France 93 (1965), 333–367 (French). MR 195868, DOI 10.24033/bsmf.1628
- Jean-Baptiste Poly, Sur un théorème de J. Leray en théorie des résidus, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A171–A174 (French). MR 289807
- Guy Robin, Formes semi-méromorphes et cohomologie du complémentaire d’une hypersurface d’une variété analytique complexe, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A33–A35 (French). MR 283243
- R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240–284 (French). MR 239613, DOI 10.1090/S0002-9904-1969-12138-5
- Philip Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419–454. MR 291170, DOI 10.2307/2373333
- André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). MR 0111056
- Hassler Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 205–244. MR 0188486
- Oscar Zariski, Algebraic surfaces, Second supplemented edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 61, Springer-Verlag, New York-Heidelberg, 1971. With appendices by S. S. Abhyankar, J. Lipman, and D. Mumford. MR 0469915
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 127-176
- MSC: Primary 32C30; Secondary 32A25
- DOI: https://doi.org/10.1090/S0002-9947-1975-0430297-3
- MathSciNet review: 0430297