A formula for the tangent bundle of flag manifolds and related manifolds
HTML articles powered by AMS MathViewer
- by Kee Yuen Lam
- Trans. Amer. Math. Soc. 213 (1975), 305-314
- DOI: https://doi.org/10.1090/S0002-9947-1975-0431194-X
- PDF | Request permission
Abstract:
A formula is given for the tangent bundle of a flag manifold G in terms of canonically defined vector bundles over G. The formula leads to a unified proof of some parallelizability theorems of Stiefel manifolds. It can also be used to deduce some immersion theorems for flag manifolds.References
- Paul F. Baum and William Browder, The cohomology of quotients of classical groups, Topology 3 (1965), 305–336. MR 189063, DOI 10.1016/0040-9383(65)90001-7
- G. E. Bredon and A. Kosiński, Vector fields on $\pi$-manifolds, Ann. of Math. (2) 84 (1966), 85–90. MR 200937, DOI 10.2307/1970531
- S. Gitler and D. Handel, The projective Stiefel manifolds. I, Topology 7 (1968), 39–46. MR 220307, DOI 10.1016/0040-9383(86)90013-3
- S. Gitler and D. Handel, The projective Stiefel manifolds. I, Topology 7 (1968), 39–46. MR 220307, DOI 10.1016/0040-9383(86)90013-3
- Werner Greub, Stephen Halperin, and Ray Vanstone, Connections, curvature, and cohomology, Pure and Applied Mathematics, Vol. 47-III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Volume III: Cohomology of principal bundles and homogeneous spaces. MR 0400275
- David Handel, A note on the parallelizability of real Stiefel manifolds, Proc. Amer. Math. Soc. 16 (1965), 1012–1014. MR 182975, DOI 10.1090/S0002-9939-1965-0182975-0
- Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276. MR 119214, DOI 10.1090/S0002-9947-1959-0119214-4
- W. C. Hsiang and R. H. Szczarba, On the tangent bundle of a Grassman manifold, Amer. J. Math. 86 (1964), 698–704. MR 172304, DOI 10.2307/2373153
- Ian R. Porteous, Topological geometry, Van Nostrand Reinhold Co., London-New York-Melbourne, 1969. MR 0254852
- W. A. Sutherland, A note on the parallelizability of sphere-bundles over spheres, J. London Math. Soc. 39 (1964), 55–62. MR 175142, DOI 10.1112/jlms/s1-39.1.55
- Jørgen Tornehave, Immersions of complex flagmanifolds, Math. Scand. 23 (1968), 22–26 (1969). MR 251743, DOI 10.7146/math.scand.a-10894
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 213 (1975), 305-314
- MSC: Primary 57D20; Secondary 57F20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0431194-X
- MathSciNet review: 0431194