Two applications of twisted wreath products to finite soluble groups
HTML articles powered by AMS MathViewer
- by Trevor O. Hawkes
- Trans. Amer. Math. Soc. 214 (1975), 325-335
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379657-X
- PDF | Request permission
Abstract:
The group construction sometimes known as the twisted wreath product is used here to answer two questions in the theory of finite, soluble groups: first to show that an arbitrary finite, soluble group may be embedded as a subgroup of a group whose upper nilpotent series is a chief series; second to construct an A-group whose Carter subgroup is โsmallโ relative to its nilpotent length.References
- Roger Carter, Bernd Fischer, and Trevor Hawkes, Extreme classes of finite soluble groups, J. Algebra 9 (1968), 285โ313. MR 228581, DOI 10.1016/0021-8693(68)90027-6
- Roger Carter and Trevor Hawkes, The ${\cal F}$-normalizers of a finite soluble group, J. Algebra 5 (1967), 175โ202. MR 206089, DOI 10.1016/0021-8693(67)90034-8
- E. C. Dade, Carter subgroups and Fitting heights of finite solvable groups, Illinois J. Math. 13 (1969), 449โ514. MR 255679
- T. O. Hawkes, An example in the theory of soluble groups, Proc. Cambridge Philos. Soc. 67 (1970), 13โ16. MR 248225, DOI 10.1017/s0305004100057030
- T. O. Hawkes, The family of Schunck classes as a lattice, J. Algebra 39 (1976), no.ย 2, 527โ550. MR 407134, DOI 10.1016/0021-8693(76)90051-X
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- Gary M. Seitz, Solvable groups having system normalizers of prime order, Trans. Amer. Math. Soc. 183 (1973), 165โ173. MR 347970, DOI 10.1090/S0002-9947-1973-0347970-6 G. M. Seitz, On system normalizers of prime order, University of Oregon (preprint).
- John G. Thompson, Automorphisms of solvable groups, J. Algebra 1 (1964), 259โ267. MR 173710, DOI 10.1016/0021-8693(64)90022-5
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 325-335
- MSC: Primary 20D10
- DOI: https://doi.org/10.1090/S0002-9947-1975-0379657-X
- MathSciNet review: 0379657