The Gaussian law and the law of the iterated logarithm for lacunary sets of characters
HTML articles powered by AMS MathViewer
- by E. Dudley
- Trans. Amer. Math. Soc. 214 (1975), 187-214
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380246-1
- PDF | Request permission
Abstract:
Salem and Zygmund showed that the Gaussian law holds for Hadamard sequences of real numbers while Mary Weiss proved a similar result for the law of the iterated logarithm. In the present paper, the author obtains corresponding results for lacunary sets of characters of an arbitrary infinite compact abelian group. It is shown that the laws are best satisfied for a certain class of lacunary sets but that modified results apply to more general classes.References
- R. C. Baker, On Wiener’s theorem on Fourier-Stieltjes coefficients and the Gaussian law, Proc. London Math. Soc. (3) 25 (1972), 525–542. MR 306807, DOI 10.1112/plms/s3-25.3.525
- S. W. Drury, The Fatou-Zygmund property for Sidon sets, Bull. Amer. Math. Soc. 80 (1974), 535–538. MR 336239, DOI 10.1090/S0002-9904-1974-13484-1
- Robert E. Edwards, Edwin Hewitt, and Kenneth A. Ross, Lacunarity for compact groups. I, Indiana Univ. Math. J. 21 (1971/72), 787–806. MR 297929, DOI 10.1512/iumj.1972.21.21063
- R. E. Edwards, E. Hewitt, and K. A. Ross, Lacunarity for compact groups. III, Studia Math. 44 (1972), 429–476. MR 340982, DOI 10.4064/sm-44-5-429-476
- P. Erdös and I. S. Gál, On the law of the iterated logarithm. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 65–76, 77–84. MR 0069309, DOI 10.1016/S1385-7258(55)50010-2
- B. V. Gnedenko, Kurs teorii veroyatnosteĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). MR 0045321
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Edwin Hewitt and H. S. Zuckerman, Some theorems on lacunary Fourier series, with extensions to compact groups, Trans. Amer. Math. Soc. 93 (1959), 1–19. MR 108685, DOI 10.1090/S0002-9947-1959-0108685-5
- A. Kolmogoroff, Über das Gesetz des iterierten Logarithmus, Math. Ann. 101 (1929), no. 1, 126–135 (German). MR 1512520, DOI 10.1007/BF01454828
- P. Révész, Some remarks on strongly multiplicative systems, Acta Math. Acad. Sci. Hungar. 16 (1965), 441–446 (English, with Russian summary). MR 185635, DOI 10.1007/BF01904850
- Daniel Rider, Gap series on groups and spheres, Canadian J. Math. 18 (1966), 389–398. MR 190635, DOI 10.4153/CJM-1966-041-0
- R. Salem and A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 333–338. MR 22263, DOI 10.1073/pnas.33.11.333
- R. Salem and A. Zygmund, On lacunary trigonometric series. II, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 54–62. MR 23936, DOI 10.1073/pnas.34.2.54
- R. Salem and A. Zygmund, La loi du logarithme itéré pour les séries trigonométriques lacunaires, Bull. Sci. Math. (2) 74 (1950), 209–224 (French). MR 39828
- S. B. Stečkin, On absolute convergence of Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956), 385–412 (Russian). MR 0079678
- Mary Weiss, The law of the iterated logarithm for lacunary trigonometric series, Trans. Amer. Math. Soc. 91 (1959), 444–469. MR 108681, DOI 10.1090/S0002-9947-1959-0108681-8
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 187-214
- MSC: Primary 42A44; Secondary 43A46, 60F15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380246-1
- MathSciNet review: 0380246