$\textrm {BV}$-functions, positive-definite functions and moment problems
HTML articles powered by AMS MathViewer
- by P. H. Maserick
- Trans. Amer. Math. Soc. 214 (1975), 137-152
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380272-2
- PDF | Request permission
Abstract:
Let S be a commutative semigroup with identity 1 and involution. A complex valued function f on S is defined to be positive definite if ${\Pi _j}{\Delta _j}f(1) \geqslant 0$ where the ${\Delta _j}$âs belong to a certain class of linear sums of shift operators. For discrete groups the positive definite functions defined herein are shown to be the classically defined positive definite functions. An integral representation theorem is proved and necessary and sufficient conditions for a function to be the difference of two positive-definite functions, i.e. a BV-function, are given. Moreover the BV-function defined herein agrees with those previously defined for semilattices, with respect to the identity involution. Connections between the positive-definite functions and completely monotonic functions are discussed along with applications to moment problems.References
- H. Bauer, Konvexität in topologischen Vektorräumen, Lecture Notes, University of Hamburg, West Germany.
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- G. G. Lorentz, Bernstein polynomials, Mathematical Expositions, No. 8, University of Toronto Press, Toronto, 1953. MR 0057370
- N. J. Fine and P. H. Maserick, On the simplex of completely monotonic functions on a comutative semigroup, Canadian J. Math. 22 (1970), 317â326. MR 257688, DOI 10.4153/CJM-1970-039-4
- J. Kist and P. H. Maserick, BV-functions on semilattices, Pacific J. Math. 37 (1971), 711â723. MR 306417, DOI 10.2140/pjm.1971.37.711
- R. J. Lindahl and P. H. Maserick, Positive-definite functions on involution semigroups, Duke Math. J. 38 (1971), 771â782. MR 291826, DOI 10.1215/S0012-7094-71-03893-2
- P. H. Maserick, Moment and BV-functions on commutative semigroups, Trans. Amer. Math. Soc. 181 (1973), 61â75. MR 396835, DOI 10.1090/S0002-9947-1973-0396835-2
- M. A. NaÄmark, Normirovannye kolâ˛tsa, Izdat. âNaukaâ, Moscow, 1968 (Russian). Second edition, revised. MR 0355602
- Stephen E. Newman, Measure algebras and functions of bounded variation on idempotent semigroups, Trans. Amer. Math. Soc. 163 (1972), 189â205. MR 308686, DOI 10.1090/S0002-9947-1972-0308686-4
- Robert R. Phelps, Lectures on Choquetâs theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470 D. V. Widder, The Laplace transform, Princeton Math. Series, vol. 6, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 232.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 137-152
- MSC: Primary 43A35; Secondary 44A10, 44A50
- DOI: https://doi.org/10.1090/S0002-9947-1975-0380272-2
- MathSciNet review: 0380272