A codimension theorem for pseudo-Noetherian rings
HTML articles powered by AMS MathViewer
- by Kenneth McDowell
- Trans. Amer. Math. Soc. 214 (1975), 179-185
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382252-X
- PDF | Request permission
Abstract:
M. Auslander and M. Bridger have shown that the depth of a Noetherian local ring is the sum of the Gorenstein dimension and the depth of any given nonzero finitely generated module of finite Gorenstein dimension. In this paper it is demonstrated that this result remains true when suitably interpreted for the class of coherent rings herein entitled pseudo-Noetherian rings. This class contains, among others, all Noetherian rings and valuation domains as well as non-Noetherian local rings of infinite depth.References
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 0269685
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- N. Bourbaki, Éléments de mathématique. Fasc. X. Première partie. Livre III: Topologie générale. Chapitre 10: Espaces fonctionnels, Actualités Sci. Indust., No. 1084, Hermann, Paris, 1961 (French). Deuxième édition, entièrement refondue. MR 0149429
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Kenneth P. McDowell, Pseudo-Noetherian rings, Canad. Math. Bull. 19 (1976), no. 1, 77–84. MR 414541, DOI 10.4153/CMB-1976-010-0
- Bo Stenström, Coherent rings and $F\,P$-injective modules, J. London Math. Soc. (2) 2 (1970), 323–329. MR 258888, DOI 10.1112/jlms/s2-2.2.323
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 179-185
- MSC: Primary 13C15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0382252-X
- MathSciNet review: 0382252