On a Galois theory for inseparable field extensions
HTML articles powered by AMS MathViewer
- by John N. Mordeson
- Trans. Amer. Math. Soc. 214 (1975), 337-347
- DOI: https://doi.org/10.1090/S0002-9947-1975-0384762-8
- PDF | Request permission
Abstract:
Heerema has developed a Galois theory for fields L of characteristic $p \ne 0$ in which the Galois subfields K are those for which $L/K$ is normal, modular and, for some nonnegative integer $e,K({L^{{p^{e + 1}}}})/K$ is separable. The related automorphism groups G are subgroups of a particular group A of automorphisms on $L[x]/{x^{{p^e} + 1}}L[x]$ where x is an indeterminate over L. For $H \subseteq G$ Galois subgroups of A, we give a necessary and sufficient condition for H to be G-invariant. An extension of a result of the classical Galois theory is also given as is a necessary and sufficient condition for every intermediate field of $L/K$ to be Galois where K is a Galois subfield of L.References
- R. Davis, A Galois theory for a class of purely inseparable field extensions (unpublished notes).
- James K. Deveney, An intermediate theory for a purely inseparable Galois theory, Trans. Amer. Math. Soc. 198 (1974), 287–295. MR 417141, DOI 10.1090/S0002-9947-1974-0417141-4
- Robert Gilmer and William Heinzer, On the existence of exceptional field extensions, Bull. Amer. Math. Soc. 74 (1968), 545–547. MR 222055, DOI 10.1090/S0002-9904-1968-12002-6
- Nickolas Heerema, A Galois theory for inseparable field extensions, Trans. Amer. Math. Soc. 154 (1971), 193–200. MR 269632, DOI 10.1090/S0002-9947-1971-0269632-4
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871, DOI 10.1007/978-1-4612-9872-4
- Linda Almgren Kime, Purely inseparable, modular extensions of unbounded exponent, Trans. Amer. Math. Soc. 176 (1973), 335–349. MR 311630, DOI 10.1090/S0002-9947-1973-0311630-8
- J. N. Mordeson and W. W. Shoultz, $p$-bases of inseparable field extensions, Arch. Math. (Basel) 24 (1973), 44–49. MR 318116, DOI 10.1007/BF01228170
- John N. Mordeson and Bernard Vinograde, Structure of arbitrary purely inseparable extension fields, Lecture Notes in Mathematics, Vol. 173, Springer-Verlag, Berlin-New York, 1970. MR 0276204, DOI 10.1007/BFb0060992
- Moss Eisenberg Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401–410. MR 223343, DOI 10.2307/1970711
- Morris Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc. 116 (1965), 435–449. MR 191895, DOI 10.1090/S0002-9947-1965-0191895-1
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 337-347
- MSC: Primary 12F15
- DOI: https://doi.org/10.1090/S0002-9947-1975-0384762-8
- MathSciNet review: 0384762