Adjoint groups, regular unipotent elements and discrete series characters
HTML articles powered by AMS MathViewer
- by G. I. Lehrer
- Trans. Amer. Math. Soc. 214 (1975), 249-260
- DOI: https://doi.org/10.1090/S0002-9947-1975-0384915-9
- PDF | Request permission
Abstract:
It is shown that if G is a finite Chevalley group or twisted type over a field of characteristic p and U is a maximal p-subgroup of G then any nonlinear irreducible character of U vanishes on regular elements. For groups of adjoint type the linear content of the restriction to U of a discrete series character J of G is calculated and it is deduced that J takes the value 0 or ${( - 1)^s}$ on regular elements of U $(s = {\text {rank}}\;G)$.References
- A. Borel and T. A. Springer, Rationality properties of linear algebraic groups. II, Tohoku Math. J. (2) 20 (1968), 443–497. MR 244259, DOI 10.2748/tmj/1178243073
- Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712, DOI 10.1007/BF02684375
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163 C. Chevalley, Séminaire sur la classification des groupes de Lie algébriques, 2 vols., Secrétariat mathématique, Paris, 1958. MR 21 #5696.
- I. M. Gel′fand and M. I. Graev, Construction of irreducible representations of simple algebraic groups over a finite field, Dokl. Akad. Nauk SSSR 147 (1962), 529–532 (Russian). MR 0148765
- Robert B. Howlett, On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1973/74), 125–135. MR 360781, DOI 10.1007/BF01189349
- G. I. Lehrer, Discrete series and regular unipotent elements, J. London Math. Soc. (2) 6 (1973), 732–736. MR 318288, DOI 10.1112/jlms/s2-6.4.732
- T. A. Springer, Some arithmetical results on semi-simple Lie algebras, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 115–141. MR 206171, DOI 10.1007/BF02684358
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554, DOI 10.1007/BF02684397 —, Lectures on Chevalley groups, Mimeographed notes, Yale University, 1967.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 249-260
- MSC: Primary 20C15; Secondary 20G40
- DOI: https://doi.org/10.1090/S0002-9947-1975-0384915-9
- MathSciNet review: 0384915