$o$-weakly compact mappings of Riesz spaces
HTML articles powered by AMS MathViewer
- by P. G. Dodds
- Trans. Amer. Math. Soc. 214 (1975), 389-402
- DOI: https://doi.org/10.1090/S0002-9947-1975-0385629-1
- PDF | Request permission
Abstract:
A characterization is given of linear mappings from a Riesz space to a Banach space which map order intervals to relatively weakly compact sets. The characterization is based on recent results of Burkinshaw and Fremlin. A number of applications are made to known results concerning weakly compact mappings and to results in the theory of Banach space-valued measures.References
- Ichiro Amemiya, On ordered topological linear spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 14–23. MR 0138971
- Tsuyoshi Andô, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961), 395–404. MR 137806, DOI 10.2140/pjm.1961.11.395
- R. G. Bartle, N. Dunford, and J. Schwartz, Weak compactness and vector measures, Canadian J. Math. 7 (1955), 289–305. MR 70050, DOI 10.4153/CJM-1955-032-1
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, DOI 10.4064/sm-17-2-151-164
- James K. Brooks and Robert S. Jewett, On finitely additive vector measures, Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1294–1298. MR 269802, DOI 10.1073/pnas.67.3.1294
- Owen Burkinshaw, Weak compactness in the order dual of a vector lattice, Trans. Amer. Math. Soc. 187 (1974), 183–201. MR 394098, DOI 10.1090/S0002-9947-1974-0394098-6
- Mahlon M. Day, Normed linear spaces, Reihe: Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094675
- J. Diestel and B. Faires, On vector measures, Trans. Amer. Math. Soc. 198 (1974), 253–271. MR 350420, DOI 10.1090/S0002-9947-1974-0350420-8
- Jean Dieudonné, Sur la convergence des suites de mesures de Radon, An. Acad. Brasil. Ci. 23 (1951), 21–38 (French). MR 42496
- P. G. Dodds, Sequential convergence in the order duals of certain classes of Riesz spaces, Trans. Amer. Math. Soc. 203 (1975), 391–403. MR 358282, DOI 10.1090/S0002-9947-1975-0358282-0
- Barbara Faires, On Vitali-Hahn-Saks type theorems, Bull. Amer. Math. Soc. 80 (1974), 670–674. MR 377509, DOI 10.1090/S0002-9904-1974-13541-X
- D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge University Press, London-New York, 1974. MR 0454575, DOI 10.1017/CBO9780511897207
- A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, DOI 10.4153/cjm-1953-017-4
- Samuel Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70–90. MR 90774, DOI 10.1090/S0002-9947-1957-0090774-3
- Samuel Kaplan, Closure properties of $C(X)$ in its second dual, Proc. Amer. Math. Soc. 17 (1966), 401–406. MR 188828, DOI 10.1090/S0002-9939-1966-0188828-7
- Samuel Kaplan, On weak compactness in the space of Radon measures, J. Functional Analysis 5 (1970), 259–298. MR 0261317, DOI 10.1016/0022-1236(70)90030-3
- Igor Kluvánek, Intégrale vectorielle de Daniell, Mat.-Fyz. Časopis. Sloven. Akad. Vied. 15 (1965), 146–161 (French, with Russian summary). MR 231969
- Igor Kluvánek, The extension and closure of vector measure, Vector and operator valued measures and applications (Proc. Sympos., Alta, Utah, 1972) Academic Press, New York, 1973, pp. 175–190. MR 0335741
- W. A. J. Luxemburg, Notes on Banach function spaces. XIVa, Nederl. Akad. Wetensch. Proc. Ser. A 68=Indag. Math. 27 (1965), 229–239. MR 0188766, DOI 10.1016/S1385-7258(65)50028-7
- W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces. VI, VII, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag. Math. 25 (1963), 655–668; 669–681. MR 0162124, DOI 10.1016/S1385-7258(63)50066-3 —, Riesz spaces. I, North-Holland, Amsterdam, 1971.
- A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228. MR 126145, DOI 10.4064/sm-19-2-209-228
- Haskell P. Rosenthal, On complemented and quasi-complemented subspaces of quotients of $C(S)$ for Stonian $S$, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1165–1169. MR 231185, DOI 10.1073/pnas.60.4.1165
- Erik Thomas, L’intégration par rapport à une mesure de Radon vectorielle, Ann. Inst. Fourier (Grenoble) 20 (1970), no. 2, 55–191 (1971) (French, with English summary). MR 463396, DOI 10.5802/aif.352 J. J. Uhl, Jr., Applications of a lemma of Rosenthal to vector measures and series in Banach spaces (preprint).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 389-402
- MSC: Primary 47B55; Secondary 46E40
- DOI: https://doi.org/10.1090/S0002-9947-1975-0385629-1
- MathSciNet review: 0385629