Weakly smooth continua
HTML articles powered by AMS MathViewer
- by Lewis Lum
- Trans. Amer. Math. Soc. 214 (1975), 153-167
- DOI: https://doi.org/10.1090/S0002-9947-1975-0385820-4
- PDF | Request permission
Abstract:
We define and investigate a class of continua called weakly smooth. Smooth dendroids, weakly smooth dendroids, generalized trees, and smooth continua are all examples of weakly smooth continua. We generalize characterizations of the above mentioned examples to weakly smooth continua. In particular, we characterize them as compact Hausdorff spaces which admit a quasi order satisfying certain properties.References
- David P. Bellamy, Composants of Hausdorff indecomposable continua; a mapping approach, Pacific J. Math. 47 (1973), 303–309. MR 331345, DOI 10.2140/pjm.1973.47.303
- J. J. Charatonik, On ramification points in the classical sense, Fund. Math. 51 (1962/63), 229–252. MR 143183, DOI 10.4064/fm-51-3-229-252
- J. J. Charatonik and Carl Eberhart, On smooth dendroids, Fund. Math. 67 (1970), 297–322. MR 275372, DOI 10.4064/fm-67-3-297-322
- H. S. Davis, D. P. Stadtlander, and P. M. Swingle, Properties of the set functions $T^{n}$, Portugal. Math. 21 (1962), 113–133. MR 142108
- G. R. Gordh Jr., Concerning closed quasi-orders on hereditarily unicoherent continua, Fund. Math. 78 (1973), no. 1, 61–73. MR 322835, DOI 10.4064/fm-78-1-61-73 —, Monotone decompositions of irreducible Hausdorff continua, University of California at Riverside, Ph. D. Dissertation, 1971.
- G. R. Gordh Jr., Monotone decompositions of irreducible Hausdorff continua, Pacific J. Math. 36 (1971), 647–658. MR 281163, DOI 10.2140/pjm.1971.36.647
- G. R. Gordh Jr., On decompositions of smooth continua, Fund. Math. 75 (1972), no. 1, 51–60. MR 317299, DOI 10.4064/fm-75-1-51-60
- John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR 0125557
- R. J. Koch and I. S. Krule, Weak cutpoint ordering on hereditarily unicoherent continua, Proc. Amer. Math. Soc. 11 (1960), 679–681. MR 120606, DOI 10.1090/S0002-9939-1960-0120606-1
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- Lewis Lum, A quasi order characterization of smooth continua, Pacific J. Math. 53 (1974), 495–500. MR 358734, DOI 10.2140/pjm.1974.53.495
- Lewis Lum, Weakly smooth dendroids, Fund. Math. 83 (1974), no. 2, 111–120. MR 334164, DOI 10.4064/fm-83-2-111-120
- T. Maćkowiak, Some characterizations of smooth continua, Fund. Math. 79 (1973), no. 2, 173–186. MR 321033, DOI 10.4064/fm-79-2-173-186
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- E. S. Thomas Jr., Monotone decompositions of irreducible continua, Rozprawy Mat. 50 (1966), 74. MR 196721
- L. E. Ward Jr., A fixed point theorem for multi-valued functions, Pacific J. Math. 8 (1958), 921–927. MR 103446, DOI 10.2140/pjm.1958.8.921
- L. E. Ward Jr., A note on dendrites and trees, Proc. Amer. Math. Soc. 5 (1954), 992–994. MR 71759, DOI 10.1090/S0002-9939-1954-0071759-2
- L. E. Ward Jr., Mobs, trees, and fixed points, Proc. Amer. Math. Soc. 8 (1957), 798–804. MR 97036, DOI 10.1090/S0002-9939-1957-0097036-4
- L. E. Ward Jr., Partially ordered topological spaces, Proc. Amer. Math. Soc. 5 (1954), 144–161. MR 63016, DOI 10.1090/S0002-9939-1954-0063016-5
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 153-167
- MSC: Primary 54F20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0385820-4
- MathSciNet review: 0385820