On the structure of $S$ and $C(S)$ for $S$ dyadic
HTML articles powered by AMS MathViewer
- by James Hagler
- Trans. Amer. Math. Soc. 214 (1975), 415-428
- DOI: https://doi.org/10.1090/S0002-9947-1975-0388062-1
- PDF | Request permission
Abstract:
A dyadic space S is defined to be a continuous image of ${\{ 0,1\} ^\mathfrak {m}}$ for some infinite cardinal number $\mathfrak {m}$. We deduce Banach space properties of $C(S)$ and topological properties of S. For example, under certain cardinality restrictions on $\mathfrak {m}$, we show: Every dyadic space of topological weight $\mathfrak {m}$ contains a closed subset homeomorphic to ${\{ 0,1\} ^\mathfrak {m}}$. Every Banach space X isomorphic to an $\mathfrak {m}$ dimensional subspace of $C(S)$ (for S dyadic) contains a subspace isomorphic to ${l^1}(\Gamma )$ where $\Gamma$ has cardinality $\mathfrak {m}$.References
- S. Banach, Théorie des opérations linéaries, Monografie Mat., PWN, Warsaw, 1932; reprint, Chelsea, New York, 1955. MR 17, 175.
- B. Efimov, Subspaces of dyadic bicompacta, Dokl. Akad. Nauk SSSR 185 (1969), 987–990 (Russian). MR 0242125
- B. Efimov and R. Engelking, Remarks on dyadic spaces. II, Colloq. Math. 13 (1964/65), 181–197. MR 188964, DOI 10.4064/cm-13-2-181-197
- R. Engelking, Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287–304. MR 196692, DOI 10.4064/fm-57-3-287-304
- James Hagler and Charles Stegall, Banach spaces whose duals contain complemented subspaces isomorphic to $C[0,1]$, J. Functional Analysis 13 (1973), 233–251. MR 0350381, DOI 10.1016/0022-1236(73)90033-5
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- Robert C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738–743. MR 417763, DOI 10.1090/S0002-9904-1974-13580-9
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain ${l_1}$ and whose duals are non separable (preprint).
- C. L. Liu, Topics in combinatorial mathematics, Mathematical Association of America, Washington, D.C., 1972. Notes on lectures given at the 1972 MAA Summer Seminar, Williams College, Williamstown, Mass. MR 0342399
- Dorothy Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 108–111. MR 6595, DOI 10.1073/pnas.28.3.108
- A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.) 58 (1968), 92. MR 227751
- A. Pełczyński, On Banach spaces containing $L_{1}(\mu )$, Studia Math. 30 (1968), 231–246. MR 232195, DOI 10.4064/sm-30-2-231-246
- Haskell P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty }(\mu )$ for finite measure $\mu$, Acta Math. 124 (1970), 205–248. MR 257721, DOI 10.1007/BF02394572
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 415-428
- MSC: Primary 46E15; Secondary 54A25
- DOI: https://doi.org/10.1090/S0002-9947-1975-0388062-1
- MathSciNet review: 0388062