Normal structure of the one-point stabilizer of a doubly-transitive permutation group. I
HTML articles powered by AMS MathViewer
- by Michael E. OβNan
- Trans. Amer. Math. Soc. 214 (1975), 1-42
- DOI: https://doi.org/10.1090/S0002-9947-1975-0393207-3
- PDF | Request permission
Abstract:
Let G be a doubly-transitive permutation group on a finite set X and x a point of X. Let ${N^x}$ be a normal subgroup of ${G_x}$, the subgroup fixing x, such that ${N^x}$ is a T.I. set and not semiregular on $X - x$. Then, $PSL(n,q) \subseteq G \subseteq P\Gamma L(n,q)$. Geometrical consequences of this result are also obtained.References
- J. L. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222β241. MR 215913, DOI 10.1016/0021-8693(67)90005-1
- Richard Brauer, On quotient groups of finite groups, Math. Z. 83 (1964), 72β84. MR 159872, DOI 10.1007/BF01111110
- Richard Brauer and Michio Suzuki, On finite groups of even order whose $2$-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757β1759. MR 109846, DOI 10.1073/pnas.45.12.1757
- R. Brauer, Michio Suzuki, and G. E. Wall, A characterization of the one-dimensional unimodular projective groups over finite fields, Illinois J. Math. 2 (1958), 718β745. MR 104734, DOI 10.1215/ijm/1255448336 W. Burnside, Theory of groups, 2nd ed., Dover, New York, 1967.
- Walter Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0219636
- Walter Feit, A characterization of the simple groups $\textrm {SL}(2,\,2^{a})$, Amer. J. Math. 82 (1960), 281β300. MR 113954, DOI 10.2307/2372736
- George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403β420. MR 202822, DOI 10.1016/0021-8693(66)90030-5
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Christoph Hering, William M. Kantor, and Gary M. Seitz, Finite groups with a split $BN$-pair of rank $1$. I, J. Algebra 20 (1972), 435β475. MR 301085, DOI 10.1016/0021-8693(72)90068-3 M. OβNan, A characterization of ${L_n}(q)$ as a permutation group, Math. Z. 127 (1972), 301-314. MR 47 #310.
- T. G. Ostrom and A. Wagner, On projective and affine planes with transitive collineation groups. , Math. Z. 71 (1959), 186β199. MR 0110975, DOI 10.1007/BF01181398
- Ernest Shult, On a class of doubly transitive groups, Illinois J. Math. 16 (1972), 434β445. MR 296150
- Michio Suzuki, On the existence of a Hall normal subgroup, J. Math. Soc. Japan 15 (1963), 387β391. MR 158935, DOI 10.2969/jmsj/01540387
- Michio Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math. (2) 80 (1964), 58β77. MR 162841, DOI 10.2307/1970491
- Helmut Wielandt, Finite permutation groups, Academic Press, New York-London, 1964. Translated from the German by R. Bercov. MR 0183775
- Helmut Wielandt, Γber die Existenz von Normalteilern in endlichen Gruppen, Math. Nachr. 18 (1958), 274β280 (German). MR 103228, DOI 10.1002/mana.19580180130 E. Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1937), 256-264.
- Christoph Hering, On subgroups with trivial normalizer intersection, J. Algebra 20 (1972), 622β629. MR 322020, DOI 10.1016/0021-8693(72)90075-0 E. Shult, On the fusion of an involution in its centralizer (unpublished).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 1-42
- MSC: Primary 20B20
- DOI: https://doi.org/10.1090/S0002-9947-1975-0393207-3
- MathSciNet review: 0393207