Spectral analysis of finite convolution operators
HTML articles powered by AMS MathViewer
- by Richard Frankfurt
- Trans. Amer. Math. Soc. 214 (1975), 279-301
- DOI: https://doi.org/10.1090/S0002-9947-1975-0397481-9
- PDF | Request permission
Abstract:
In this paper the similarity problem for operators of the form $( \ast )\;T:f(x) \to \smallint _0^xk(x - t)f(t)dt$ on ${L^2}(0,1)$ is studied. Let $K(z) = \smallint _0^1\;k(t){e^{itz}}dt$. A function $C(z)$ is called a symbol for T if $C(z)$ can be written in the form $C(z) = K(z) + {e^{iz}}G(z)$, where $G(z)$ is a function bounded and analytic in a half plane $y > \delta$, for some real number $\delta$. Under suitable restrictions, it is shown that two operators of the form $( \ast )$ will be similar if they possess symbols which are asymptotically close together as $z \to \infty$ in some half plane $y > \delta$.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911, DOI 10.1515/9781400874538
- M. S. Brodskiĭ, Triangular and Jordan representations of linear operators, Translations of Mathematical Monographs, Vol. 32, American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by J. M. Danskin. MR 0322542 V. W. Daniel, Invariant subspaces of convolution operators, University of Virginia Doctoral Dissertation, 1970.
- Victor W. Daniel, Convolution operators on Lebesgue spaces of the half-line, Trans. Amer. Math. Soc. 164 (1972), 479–488. MR 291849, DOI 10.1090/S0002-9947-1972-0291849-4
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. I, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. MR 0061695
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- Richard Frankfurt and James Rovnyak, Finite convolution operators, J. Math. Anal. Appl. 49 (1975), 347–374. MR 367705, DOI 10.1016/0022-247X(75)90185-7
- J. M. Freeman, Volterra operators similar to $J:f(x)\to \int _{0}{}^{x}f(y)dy$, Trans. Amer. Math. Soc. 116 (1965), 181–192. MR 192367, DOI 10.1090/S0002-9947-1965-0192367-0
- Jonathan I. Ginsberg and Donald J. Newman, Generators of certain radical algebras, J. Approximation Theory 3 (1970), 229–235. MR 264419, DOI 10.1016/0021-9045(70)90048-1
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142, DOI 10.1090/mmono/018
- I. C. Gohberg and M. G. Kreĭn, Theory and applications of Volterra operators in Hilbert space, Translations of Mathematical Monographs, Vol. 24, American Mathematical Society, Providence, R.I., 1970. Translated from the Russian by A. Feinstein. MR 0264447 G. H. Hardy, Orders of infinity, Cambridge Univ. Press, London, 1924.
- G. K. Kalisch, On similarity, reducing manifolds, and unitary equivalence of certain Volterra operators, Ann. of Math. (2) 66 (1957), 481–494. MR 91443, DOI 10.2307/1969905
- G. K. Kalisch, On isometric equivalence of certain Volterra operators, Proc. Amer. Math. Soc. 12 (1961), 93–98. MR 120507, DOI 10.1090/S0002-9939-1961-0120507-X
- G. K. Kalisch, On similarity invariants of certain operators in $L_{p}$, Pacific J. Math. 11 (1961), 247–252. MR 120508, DOI 10.2140/pjm.1961.11.247
- I. I. Kal′muševskiĭ, On the linear equivalence of Volterra operators, Uspehi Mat. Nauk 20 (1965), no. 6 (126), 93–97 (Russian). MR 0190751
- B. Ja. Levin, Distribution of zeros of entire functions, American Mathematical Society, Providence, R.I., 1964. MR 0156975, DOI 10.1090/mmono/005
- Stanley J. Osher, Two papers on similarity of certain Volterra integral operators, Memoirs of the American Mathematical Society, No. 73, American Mathematical Society, Providence, R.I., 1967. MR 0218934
- L. A. Sahnovič, On reduction of Volterra operators to the simplest form and on inverse problems, Izv. Akad. Nauk SSSR Ser. Mat. 21 (1957), 235–262 (Russian). MR 0091444
- L. A. Sahnovič, Spectral analysis of operators of the form $Kf=\int _{0}^{x}f(t)k(x-t)dt$, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 299–308. MR 0098964
- L. A. Sahnovič, Spectral analysis of Volterra operators prescribed in the vector-function space $L_{m}{}^{2}\,[0,\,l]$, Ukrain. Mat. Ž. 16 (1964), 259–268 (Russian). MR 0165396
- Donald Sarason, A remark on the Volterra operator, J. Math. Anal. Appl. 12 (1965), 244–246. MR 192355, DOI 10.1016/0022-247X(65)90035-1
- Donald Sarason, Generalized interpolation in $H^{\infty }$, Trans. Amer. Math. Soc. 127 (1967), 179–203. MR 208383, DOI 10.1090/S0002-9947-1967-0208383-8
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 B. Sz.-Nagy and C. Foias, Analyse harmonique des opérateurs de l’espace de Hilbert, Masson, Paris; Akad. Kiadó, Budapest, 1967; English rev. transl., North-Holland, Amsterdam; American Elsevier, New York; Akad. Kiadó, Budapest, 1970. MR 37 #778; 43 #947.
- Vito Volterra, Theory of functionals and of integral and integro-differential equations, Dover Publications, Inc., New York, 1959. With a preface by G. C. Evans, a biography of Vito Volterra and a bibliography of his published works by E. Whittaker. MR 0100765 V. Volterra and J. Pérès, Leçons sur la composition et les fonctions permutables, Gauthier-Villars, Paris, 1924.
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 279-301
- MSC: Primary 47G05; Secondary 44A35
- DOI: https://doi.org/10.1090/S0002-9947-1975-0397481-9
- MathSciNet review: 0397481