Infinite convolutions on locally compact Abelian groups and additive functions
HTML articles powered by AMS MathViewer
- by Philip Hartman
- Trans. Amer. Math. Soc. 214 (1975), 215-231
- DOI: https://doi.org/10.1090/S0002-9947-1975-0400333-9
- PDF | Request permission
Abstract:
Let ${\mu _1},{\mu _2}, \ldots$ be regular probability measures on a locally compact Abelian group G such that $\mu = {\mu _1} \ast {\mu _2} \ast \cdots = \lim {\mu _1} \ast \cdots \ast {\mu _n}$ exists (and is a probability measure). For arbitrary G, we derive analogues of the Lévy theorem on the existence of an atom for $\mu$ and of the “pure theorems” of Jessen, Wintner and van Kampen (dealing with discrete ${\mu _1},{\mu _2}, \ldots$) in the case $G = {R^d}$. These results are applied to the asymptotic distribution $\mu$ of an additive function $f:{Z_ + } \to G$ after generalizing the Erdös-Wintner result $(G = {R^1})$ which implies that $\mu$ is an infinite convolution of discrete probability measures.References
- Henri Cartan and Roger Godement, Théorie de la dualité et analyse harmonique dans les groupes abéliens localement compacts, Ann. Sci. École Norm. Sup. (3) 64 (1947), 79–99 (French). MR 0023241, DOI 10.24033/asens.943
- Hubert Delange, Sur les fonctions arithmétiques multiplicatives, Ann. Sci. École Norm. Sup. (3) 78 (1961), 273–304 (French). MR 0169829, DOI 10.24033/asens.1103
- Hubert Delange, On the distribution modulo $1$ of additive functions, J. Indian Math. Soc. 34 (1970), no. 3-4, 215–235 (1971). MR 0491576
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896 P. T. D. A. Elliott, The continuity of the limiting distribution of additive functions $\pmod 1$ (to appear).
- Paul Erdös and Aurel Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math. 61 (1939), 713–721. MR 247, DOI 10.2307/2371326
- G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hungar. 19 (1968), 365–403 (German). MR 230694, DOI 10.1007/BF01894515
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- Børge Jessen and Aurel Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), no. 1, 48–88. MR 1501802, DOI 10.1090/S0002-9947-1935-1501802-5
- E. R. van Kampen, Infinite product measures and infinite convolutions, Amer. J. Math. 62 (1940), 417–448. MR 1282, DOI 10.2307/2371464 P. Lévy, Sur les séries dont les termes sont des variables éventuelles indépendantes, Studia Math. 3 (1931), 119-155.
- Michel Loève, Probability theory, 3rd ed., D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
- R. M. Loynes, Products of independent random elements in a topological group, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/63), 446–455. MR 156370, DOI 10.1007/BF00531876
- V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sbornik N.S. 25(67) (1949), 107–150 (Russian). MR 0030584
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834 A. Wintner, Asymptotic distributions and infinite convolutions, Lecture Notes, The Institute for Advanced Study, Princeton, N. J., 1938. —, The Fourier transforms of probability distributions, Lecture Notes, Baltimore, 1947.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 215-231
- MSC: Primary 60B15; Secondary 10K99, 43A05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0400333-9
- MathSciNet review: 0400333