On angular momentum Helmholtz theorems and cohomology of Lie algebras
HTML articles powered by AMS MathViewer
- by Henrik Stetkaer
- Trans. Amer. Math. Soc. 214 (1975), 349-374
- DOI: https://doi.org/10.1090/S0002-9947-1975-0410775-3
- PDF | Request permission
Abstract:
Helmholtz’ 2nd theorem (that every vector field on ${{\mathbf {R}}^3}$ with vanishing curl is gradient of a function) can be viewed as a statement about the group of translations of ${{\mathbf {R}}^3}$. We prove similar theorems for other Lie transformation groups, in particular for semidirect products of abelian and compact semisimple groups. Using Hodge theory we also obtain results analogous to the 1st Helmholtz theorem, but only for compact Lie transformation groups.References
- N. Bourbaki, Éléments de mathématique. XXV. Première partie. Livre VI: Intégration. Chapitre 6: Intégration vectorielle, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1281, Hermann, Paris, 1959 (French). MR 0124722
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- John T. Cannon and Thomas F. Jordan, A no-interaction theorem in classical relativistic Hamiltonian particle dynamics, J. Mathematical Phys. 5 (1964), 299–307. MR 170649, DOI 10.1063/1.1704121
- Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124. MR 24908, DOI 10.1090/S0002-9947-1948-0024908-8
- J. J. Duistermaat and L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), no. 3-4, 183–269. MR 388464, DOI 10.1007/BF02392165 W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups. II, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indag. Math. 15 (1953), 493-504. MR 15, 505.
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- G. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. Math. 6 (1962), 367–401. MR 147577, DOI 10.1215/ijm/1255632500
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Joseph B. Keller, Simple proofs of the theorems of J. S. Lomont and H. E. Moses on the decomposition and representation of vector fields, Comm. Pure Appl. Math. 14 (1961), 77–80. MR 126955, DOI 10.1002/cpa.3160140106 G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; 2nd ed., 1966; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 33 #3069; 40 #1750. H. Leutwyler, Group-theoretical basis of the angular momentum Helmholtz theorem of Lomont and Moses, Nuovo Cimento 37 (1965), 543-555. —, A no-interaction theorem in classical relativistic Hamiltonian particle mechanics, Nuovo Cimento 37 (1965), 556-567.
- J. S. Lomont and H. E. Moses, An angular momentum Helmholtz theorem, Comm. Pure Appl. Math. 14 (1961), 69–76. MR 126954, DOI 10.1002/cpa.3160140105
- Ottmar Loos, Symmetric spaces. I: General theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0239005
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234, DOI 10.1007/978-3-642-86426-1 V. S. Varadajaran, Geomerty of quantum theory. II, Van Nostrand, Princeton, N. J., 1970.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 349-374
- MSC: Primary 57E20; Secondary 58F05
- DOI: https://doi.org/10.1090/S0002-9947-1975-0410775-3
- MathSciNet review: 0410775