Ruelle's operator theorem and -measures
Author:
Peter Walters
Journal:
Trans. Amer. Math. Soc. 214 (1975), 375-387
MSC:
Primary 28A65; Secondary 58F15
DOI:
https://doi.org/10.1090/S0002-9947-1975-0412389-8
MathSciNet review:
0412389
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We use g-measures to give a proof of a convergence theorem of Ruelle. The method of proof is used to gain information about the ergodic properties of equilibrium states for subshifts of finite type.
- [1] Rufus Bowen, Markov partitions for Axiom 𝐴 diffeomorphisms, Amer. J. Math. 92 (1970), 725–747. MR 277003, https://doi.org/10.2307/2373370
- [2] Rufus Bowen, Bernoulli equilibrium states for Axiom A diffeomorphisms, Math. Systems Theory 8 (1974/75), no. 4, 289–294. MR 0387539, https://doi.org/10.1007/BF01780576
- [3] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR 0117523
- [4] Donald Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Advances in Math. 5 (1970), 339–348 (1970). MR 274716, https://doi.org/10.1016/0001-8708(70)90008-3
- [5] Michael Keane, Strongly mixing 𝑔-measures, Invent. Math. 16 (1972), 309–324. MR 310193, https://doi.org/10.1007/BF01425715
- [6] François Ledrappier, Principe variationnel et systèmes dynamiques symboliques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 185–202. MR 404584, https://doi.org/10.1007/BF00533471
- [7] William Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55–66. MR 161372, https://doi.org/10.1090/S0002-9947-1964-0161372-1
- [8] D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys. 9 (1968), 267–278. MR 234697
- [9] V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3–56 (Russian). MR 0217258
- [10] Ja. G. Sinaĭ, Markov partitions and U-diffeomorphisms, Funkcional. Anal. i Priložen 2 (1968), no. 1, 64–89 (Russian). MR 0233038
- [11] Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 0399421
- [12] Peter Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1975), no. 4, 937–971. MR 390180, https://doi.org/10.2307/2373682
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A65, 58F15
Retrieve articles in all journals with MSC: 28A65, 58F15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1975-0412389-8
Article copyright:
© Copyright 1975
American Mathematical Society