The stability problem in shape, and a Whitehead theorem in pro-homotopy
HTML articles powered by AMS MathViewer
- by David A. Edwards and Ross Geoghegan
- Trans. Amer. Math. Soc. 214 (1975), 261-277
- DOI: https://doi.org/10.1090/S0002-9947-1975-0413095-6
- PDF | Request permission
Abstract:
Theorem 3.1 is a Whitehead theorem in pro-homotopy for finite-dimensional pro-complexes. This is used to obtain necessary and sufficient algebraic conditions for a finite-dimensional tower of complexes to be pro-homotopy equivalent to a complex (§4) and for a finite-dimensional compact metric space to be pointed shape equivalent to an absolute neighborhood retract (§5).References
- M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag, Berlin-New York, 1969. MR 0245577, DOI 10.1007/BFb0080957
- Karol Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223–254. MR 229237, DOI 10.4064/fm-62-3-223-254
- Karol Borsuk, Fundamental retracts and extensions of fundamental sequences, Fund. Math. 64 (1969), 55–85; errata: Fund. Math. 64 (1969), 375. MR 0243520, DOI 10.4064/fm-64-1-55-85
- K. Borsuk, On the shape of $\textrm {FANR}$-sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 529–532 (English, with Russian summary). MR 256394
- Karol Borsuk, Some remarks concerning the shape of pointed compacta, Fund. Math. 67 (1970), 221–240. MR 266168, DOI 10.4064/fm-67-2-221-240
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- James Draper and James Keesling, An example concerning the Whitehead theorem in shape theory, Fund. Math. 92 (1976), no. 3, 255–259. MR 431157, DOI 10.4064/fm-92-3-255-259
- David A. Edwards and Ross Geoghegan, Compacta weak shape equivalent to ANR’s, Fund. Math. 90 (1975/76), no. 2, 115–124. MR 394643, DOI 10.4064/fm-90-2-115-124
- David A. Edwards and Ross Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (2) 101 (1975), 521–535. MR 375330, DOI 10.2307/1970939
- David A. Edwards and Ross Geoghegan, Infinite-dimensional Whitehead and Vietoris theorems in shape and pro-homotopy, Trans. Amer. Math. Soc. 219 (1976), 351–360. MR 402735, DOI 10.1090/S0002-9947-1976-0402735-4 —, Stability theorems in shape and pro-homotopy (to appear).
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886, DOI 10.1515/9781400877492
- Ralph H. Fox, On shape, Fund. Math. 74 (1972), no. 1, 47–71. MR 296914, DOI 10.4064/fm-74-1-47-71
- Ross Geoghegan and R. C. Lacher, Compacta with the shape of finite complexes, Fund. Math. 92 (1976), no. 1, 25–27. MR 418029, DOI 10.4064/fm-92-1-25-27
- D. Handel and J. Segal, An acyclic continuum with non-movable suspensions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 171–172 (English, with Russian summary). MR 317266
- Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
- Daniel S. Kahn, An example in Čech cohomology, Proc. Amer. Math. Soc. 16 (1965), 584. MR 179785, DOI 10.1090/S0002-9939-1965-0179785-7 A. T. Lundell and S. Weingram, The topology of CW complexes, Van Nostrand Reinhold, New York, 1969.
- James Keesling, On the Whitehead theorem in shape theory, Fund. Math. 92 (1976), no. 3, 247–253. MR 431156, DOI 10.4064/fm-92-3-247-253
- Sibe Mardešić and Jack Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), no. 1, 41–59. MR 298634, DOI 10.4064/fm-72-1-41-59
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- M. Moszyńska, The Whitehead theorem in the theory of shapes, Fund. Math. 80 (1973), no. 3, 221–263. MR 339159, DOI 10.4064/fm-80-3-221-263
- Dock Sang Rim, Modules over finite groups, Ann. of Math. (2) 69 (1959), 700–712. MR 104721, DOI 10.2307/1970033
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56–69. MR 171284, DOI 10.2307/1970382
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 261-277
- MSC: Primary 55D99; Secondary 54C56
- DOI: https://doi.org/10.1090/S0002-9947-1975-0413095-6
- MathSciNet review: 0413095