Partition theorems related to some identities of Rogers and Watson
HTML articles powered by AMS MathViewer
- by Willard G. Connor
- Trans. Amer. Math. Soc. 214 (1975), 95-111
- DOI: https://doi.org/10.1090/S0002-9947-1975-0414480-9
- PDF | Request permission
Abstract:
This paper proves two general partition theorems and several special cases of each with both of the general theorems based on four q-series identities originally due to L. J. Rogers and G. N. Watson. One of the most interesting special cases proves that the number of partitions of an integer n into parts where even parts may not be repeated, and where odd parts occur only if an adjacent even part occurs is equal to the number of partitions of n into parts $\equiv \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7 \pmod 20$. The companion theorem proves that the number of partitions of an integer n into parts where even parts may not be repeated, where odd parts $> 1$ occur only if an adjacent even part occurs, and where 1’s occur arbitrarily is equal to the number of partitions of n into parts $\equiv \pm 1, \pm 2, \pm 5, \pm 6, \pm 8, \pm 9 \pmod 20$.References
- George E. Andrews, $q$-identities of Auluck, Carlitz, and Rogers, Duke Math. J. 33 (1966), 575–581. MR 201370
- George E. Andrews, A generalization of the Göllnitz-Gordon partition theorems, Proc. Amer. Math. Soc. 18 (1967), 945–952. MR 219497, DOI 10.1090/S0002-9939-1967-0219497-6
- George E. Andrews, Partition theorems related to the Rogers-Ramanujan identities, J. Combinatorial Theory 2 (1967), 422–430. MR 214482, DOI 10.1016/S0021-9800(67)80053-X
- Basil Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393–399. MR 123484, DOI 10.2307/2372962
- Basil Gordon, Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32 (1965), 741–748. MR 184001
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125 M. Lerch, Rozpravy České Akademie cisaře Františka Josefa 3 (1893), Čislo 5. L. J. Rogers, On the expansion of some infinite products, Proc. London Math. Soc. (1) 24 (1893), 337-352. —, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. (1) 25 (1894), 318-343. —, Third memoir on the expansion of certain infinite products, Proc. London Math. Soc. (1) 26 (1894), 15-32. A. Selberg, Über einige Arithmetische Identitäten, Avhandlinger Norske Akademie, Oslo, 1936, no. 8., pp. 1-23.
- L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147–167. MR 49225, DOI 10.1112/plms/s2-54.2.147 G. N. Watson, The mock theta functions (2), Proc. London Math. Soc. (2) 42 (1937), 274-304. —, A note on Lerch’s functions, Quart. J. Math. 8 (1937), 43-47.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 95-111
- MSC: Primary 10A45
- DOI: https://doi.org/10.1090/S0002-9947-1975-0414480-9
- MathSciNet review: 0414480