Normal structure of the one-point stabilizer of a doubly-transitive permutation group. II
HTML articles powered by AMS MathViewer
- by Michael E. O’Nan
- Trans. Amer. Math. Soc. 214 (1975), 43-74
- DOI: https://doi.org/10.1090/S0002-9947-75-99942-0
- PDF | Request permission
Abstract:
The main result is that the socle of the point stabilizer of a doubly-transitive permutation group is abelian or the direct product of an abelian group and a simple group. Under certain circumstances, it is proved that the lengths of the orbits of a normal subgroup of the one point stabilizer bound the degree of the group. As a corollary, a fixed nonabelian simple group occurs as a factor of the socle of the one point stabilizer of at most finitely many doubly-transitive groups.References
- Helmut Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra 17 (1971), 527–554 (German). MR 288172, DOI 10.1016/0021-8693(71)90008-1
- Richard Brauer and Michio Suzuki, On finite groups of even order whose $2$-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757–1759. MR 109846, DOI 10.1073/pnas.45.12.1757
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261
- George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420. MR 202822, DOI 10.1016/0021-8693(66)90030-5
- George Glauberman, On the automorphism groups of a finite group having no non-identity normal subgroups of odd order, Math. Z. 93 (1966), 154–160. MR 194503, DOI 10.1007/BF01111033
- Daniel Gorenstein and John H. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math. 6 (1962), 553–593. MR 142619 O. Grun, Beitrage zur Gruppen theorie. I, J. Reine Angew. Math. 174 (1935), 1-14.
- Michael O’Nan, A characterization of $L_{n}(q)$ as a permutation group, Math. Z. 127 (1972), 301–314. MR 311748, DOI 10.1007/BF01111389 —, Normal structure of the one-point stabilizer of a doubly-transitive permutation group. I. Trans. Amer. Math. Soc. 214 (1975), 43-74 B. Shult, On the fusion of an involution in its centralizer (unplublished).
- Michael Aschbacher, ${\mathfrak {F}}$-sets and permutation groups, J. Algebra 30 (1974), 400–416. MR 347952, DOI 10.1016/0021-8693(74)90212-9
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 214 (1975), 43-74
- MSC: Primary 20B20
- DOI: https://doi.org/10.1090/S0002-9947-75-99942-0