## Cell-like closed-$0$-dimensional decompositions of $R^{3}$ are $R^{4}$ factors

HTML articles powered by AMS MathViewer

- by Robert D. Edwards and Richard T. Miller
- Trans. Amer. Math. Soc.
**215**(1976), 191-203 - DOI: https://doi.org/10.1090/S0002-9947-1976-0383411-3
- PDF | Request permission

## Abstract:

It is proved that the product of a cell-like closed-0-dimensional upper semicontinuous decomposition of ${R^3}$ with a line is ${R^4}$. This establishes at once this feature for all the various dogbone-inspired decompositions of ${R^3}$. The proof makes use of an observation of L. Rubin that the universal cover of a wedge of circles admits a 1-1 immersion into the wedge crossed with ${R^1}$.## References

- W. R. Alford and R. B. Sher,
*Defining sequences for compact $0$-dimensional decompositions of $E^{n}$*, Bull. Acad. Polon. Sci. SΓ©r. Sci. Math. Astronom. Phys.**17**(1969), 209β212 (English, with Russian summary). MR**254824** - J. J. Andrews and M. L. Curtis,
*$n$-space modulo an arc*, Ann. of Math. (2)**75**(1962), 1β7. MR**139153**, DOI 10.2307/1970414 - Steve Armentrout,
*Monotone decompositions of $E^{3}$*, Topology Seminar (Wisconsin, 1965) Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J., 1966, pp.Β 1β25. MR**0222865** - Steve Armentrout,
*Local properties of decomposition spaces*, Proc. First Conf. on Monotone Mappings and Open Mappings (SUNY at Binghamton, Binghamton, N.Y., 1970) State Univ. of New York at Binghamton, Binghamton, N.Y., 1971, pp.Β 98β111. MR**0276942**
β, - R. H. Bing,
*The cartesian product of a certain nonmanifold and a line is $E^{4}$*, Ann. of Math. (2)**70**(1959), 399β412. MR**107228**, DOI 10.2307/1970322 - Robert D. Edwards and Leslie C. Glaser,
*A method for shrinking decompositions of certain manifolds*, Trans. Amer. Math. Soc.**165**(1972), 45β56. MR**295357**, DOI 10.1090/S0002-9947-1972-0295357-6 - Leslie C. Glaser,
*On double suspensions of arbitrary nonsimply connected homology $n$-spheres*, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp.Β 5β17. MR**0328953** - R. C. Lacher,
*Cell-like mappings. I*, Pacific J. Math.**30**(1969), 717β731. MR**251714**, DOI 10.2140/pjm.1969.30.717 - H. W. Lambert and R. B. Sher,
*Point-like $0$-dimensional decompositions of $S^{3}$*, Pacific J. Math.**24**(1968), 511β518. MR**225308**, DOI 10.2140/pjm.1968.24.511 - D. R. McMillan Jr.,
*A criterion for cellularity in a manifold. II*, Trans. Amer. Math. Soc.**126**(1967), 217β224. MR**208583**, DOI 10.1090/S0002-9947-1967-0208583-7 - D. R. McMillan Jr. and Harry Row,
*Tangled embeddings of one-dimensional continua*, Proc. Amer. Math. Soc.**22**(1969), 378β385. MR**246267**, DOI 10.1090/S0002-9939-1969-0246267-7 - Leonard R. Rubin,
*A general class of factors of $E^{4}$*, Trans. Amer. Math. Soc.**166**(1972), 215β224. MR**295314**, DOI 10.1090/S0002-9947-1972-0295314-X - R. B. Sher and W. R. Alford,
*A note on $0$-dimensional decompositions of $E^{3}$*, Amer. Math. Monthly**75**(1968), 377β378. MR**226615**, DOI 10.2307/2313418 - A. Marin and Y. M. Visetti,
*A general proof of Bingβs shrinkability criterion*, Proc. Amer. Math. Soc.**53**(1975), no.Β 2, 501β507. MR**388319**, DOI 10.1090/S0002-9939-1975-0388319-X

*A survey of results on decompositions*, in: D. Day et al., eds., Proc. University of Oklahoma Topology Conference, University of Oklahoma, 1972, pp. 1-12.

## Bibliographic Information

- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**215**(1976), 191-203 - MSC: Primary 57A10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0383411-3
- MathSciNet review: 0383411