An asymptotic formula for an integral in starlike function theory
HTML articles powered by AMS MathViewer
- by R. R. London and D. K. Thomas
- Trans. Amer. Math. Soc. 215 (1976), 393-406
- DOI: https://doi.org/10.1090/S0002-9947-1976-0387563-0
- PDF | Request permission
Abstract:
The paper is concerned with the integral \[ H = \int _0^{2\pi }|f{|^\sigma }|F{|^\tau }{(\operatorname {Re} F)^\kappa }\;d\theta \] in which f is a function regular and starlike in the unit disc, $F = zf’/f$, and the parameters $\sigma ,\tau ,\kappa$ are real. A study of H is of interest since various well-known integrals in the theory, such as the length of $f(|z| = r)$, the area of $f(|z| \leqslant r)$, and the integral means of f, are essentially obtained from it by suitably choosing the parameters. An asymptotic formula, valid as $r \to 1$, is obtained for H when f is a starlike function of positive order $\alpha$, and the parameters satisfy $\alpha \sigma + \tau + \kappa > 1,\tau + \kappa \geqslant 0,\kappa \geqslant 0,\sigma > 0$. Several easy applications of this result are made; some to obtaining old results, two others in proving conjectures of Holland and Thomas.References
- W. K. Hayman, On functions with positive real part, J. London Math. Soc. 36 (1961), 35–48. MR 150310, DOI 10.1112/jlms/s1-36.1.35
- F. Holland and D. K. Thomas, On the order of a starlike function, Trans. Amer. Math. Soc. 158 (1971), 189–201. MR 277705, DOI 10.1090/S0002-9947-1971-0277705-5
- R. R. London and D. K. Thomas, An area theorem for starlike functions, Proc. London Math. Soc. (3) 20 (1970), 734–748. MR 262481, DOI 10.1112/plms/s3-20.4.734
- Ch. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209–224. MR 137830, DOI 10.1112/jlms/s1-37.1.209
- T. Sheil-Small, Starlike univalent functions, Proc. London Math. Soc. (3) 21 (1970), 577–613. MR 276460, DOI 10.1112/plms/s3-21.4.577
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 215 (1976), 393-406
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9947-1976-0387563-0
- MathSciNet review: 0387563