Fixed point theorems for mappings satisfying inwardness conditions
HTML articles powered by AMS MathViewer
- by James Caristi
- Trans. Amer. Math. Soc. 215 (1976), 241-251
- DOI: https://doi.org/10.1090/S0002-9947-1976-0394329-4
- PDF | Request permission
Abstract:
Let X be a normed linear space and let K be a convex subset of X. The inward set, ${I_K}(x)$, of x relative to K is defined as follows: ${I_K}(x) = \{ x + c(u - x):c \geqslant 1,u \in K\}$. A mapping $T:K \to X$ is said to be inward if $Tx \in {I_K}(x)$ for each $x \in K$, and weakly inward if Tx belongs to the closure of ${I_K}(x)$ for each $x \in K$. In this paper a characterization of weakly inward mappings is given in terms of a condition arising in the study of ordinary differential equations. A general fixed point theorem is proved and applied to derive a generalization of the Contraction Mapping Principle in a complete metric space, and then applied together with the characterization of weakly inward mappings to obtain some fixed point theorems in Banach spaces.References
- Haïm Brezis, On a characterization of flow-invariant sets, Comm. Pure Appl. Math. 23 (1970), 261–263. MR 257511, DOI 10.1002/cpa.3160230211
- Felix E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882. MR 232255, DOI 10.1090/S0002-9904-1967-11823-8
- Felix E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283–301. MR 229101, DOI 10.1007/BF01350721
- Felix E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660–665. MR 230179, DOI 10.1090/S0002-9904-1968-11983-4
- Michael G. Crandall, A generalization of Peano’s existence theorem and flow invariance, Proc. Amer. Math. Soc. 36 (1972), 151–155. MR 306586, DOI 10.1090/S0002-9939-1972-0306586-2
- Ky Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. MR 251603, DOI 10.1007/BF01110225 B. R. Halpern, Fixed point theorems for outward maps, Doctoral Thesis, Univ. of California, Los Angeles, Calif., 1965.
- Benjamin Halpern, Fixed-point theorems for set-valued maps in infinite dimensional spaces, Math. Ann. 189 (1970), 87–98. MR 273479, DOI 10.1007/BF01350295
- Benjamin R. Halpern and George M. Bergman, A fixed-point theorem for inward and outward maps, Trans. Amer. Math. Soc. 130 (1968), 353–358. MR 221345, DOI 10.1090/S0002-9947-1968-0221345-0
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- W. A. Kirk, Fixed point theorems for nonexpansive mappings satisfying certain boundary conditions, Proc. Amer. Math. Soc. 50 (1975), 143–149. MR 380527, DOI 10.1090/S0002-9939-1975-0380527-7
- R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399–414. MR 318991, DOI 10.1090/S0002-9947-1973-0318991-4 W. V. Petryshyn and P. M. Fitzpatrick, Fixed point theorems for multivalued non-compact inward maps (to appear).
- R. M. Redheffer, The theorems of Bony and Brezis on flow-invariant sets, Amer. Math. Monthly 79 (1972), 740–747. MR 303024, DOI 10.2307/2316263
- Simeon Reich, Fixed points in locally convex spaces, Math. Z. 125 (1972), 17–31. MR 306989, DOI 10.1007/BF01111112
- Simeon Reich, Remarks on fixed points, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 52 (1972), 689–697 (English, with Italian summary). MR 331139
- Simeon Reich, Fixed points of condensing functions, J. Math. Anal. Appl. 41 (1973), 460–467. MR 322609, DOI 10.1016/0022-247X(73)90220-5
- Simeon Reich, Fixed points of non-expansive functions, J. London Math. Soc. (2) 7 (1973), 5–10. MR 326511, DOI 10.1112/jlms/s2-7.1.5 G. Vidossich, Existence comparison and asymptotic behavior of solutions of ordinary differential equations in finite and infinite dimensional Banach spaces (to appear). —, Nonexistence of periodic solutions of differential equations and applications to zeros of nonlinear operators (to appear).
- James A. Yorke, Differential inequalities and non-Lipschitz scalar functions, Math. Systems Theory 4 (1970), 140–153. MR 268476, DOI 10.1007/BF01691098
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 215 (1976), 241-251
- MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0394329-4
- MathSciNet review: 0394329