## Fixed point theorems for mappings satisfying inwardness conditions

HTML articles powered by AMS MathViewer

- by James Caristi PDF
- Trans. Amer. Math. Soc.
**215**(1976), 241-251 Request permission

## Abstract:

Let*X*be a normed linear space and let

*K*be a convex subset of

*X*. The inward set, ${I_K}(x)$, of

*x*relative to

*K*is defined as follows: ${I_K}(x) = \{ x + c(u - x):c \geqslant 1,u \in K\}$. A mapping $T:K \to X$ is said to be inward if $Tx \in {I_K}(x)$ for each $x \in K$, and weakly inward if

*Tx*belongs to the closure of ${I_K}(x)$ for each $x \in K$. In this paper a characterization of weakly inward mappings is given in terms of a condition arising in the study of ordinary differential equations. A general fixed point theorem is proved and applied to derive a generalization of the Contraction Mapping Principle in a complete metric space, and then applied together with the characterization of weakly inward mappings to obtain some fixed point theorems in Banach spaces.

## References

- Haïm Brezis,
*On a characterization of flow-invariant sets*, Comm. Pure Appl. Math.**23**(1970), 261–263. MR**257511**, DOI 10.1002/cpa.3160230211 - Felix E. Browder,
*Nonlinear mappings of nonexpansive and accretive type in Banach spaces*, Bull. Amer. Math. Soc.**73**(1967), 875–882. MR**232255**, DOI 10.1090/S0002-9904-1967-11823-8 - Felix E. Browder,
*The fixed point theory of multi-valued mappings in topological vector spaces*, Math. Ann.**177**(1968), 283–301. MR**229101**, DOI 10.1007/BF01350721 - Felix E. Browder,
*Semicontractive and semiaccretive nonlinear mappings in Banach spaces*, Bull. Amer. Math. Soc.**74**(1968), 660–665. MR**230179**, DOI 10.1090/S0002-9904-1968-11983-4 - Michael G. Crandall,
*A generalization of Peano’s existence theorem and flow invariance*, Proc. Amer. Math. Soc.**36**(1972), 151–155. MR**306586**, DOI 10.1090/S0002-9939-1972-0306586-2 - Ky Fan,
*Extensions of two fixed point theorems of F. E. Browder*, Math. Z.**112**(1969), 234–240. MR**251603**, DOI 10.1007/BF01110225
B. R. Halpern, - Benjamin Halpern,
*Fixed-point theorems for set-valued maps in infinite dimensional spaces*, Math. Ann.**189**(1970), 87–98. MR**273479**, DOI 10.1007/BF01350295 - Benjamin R. Halpern and George M. Bergman,
*A fixed-point theorem for inward and outward maps*, Trans. Amer. Math. Soc.**130**(1968), 353–358. MR**221345**, DOI 10.1090/S0002-9947-1968-0221345-0 - Tosio Kato,
*Nonlinear semigroups and evolution equations*, J. Math. Soc. Japan**19**(1967), 508–520. MR**226230**, DOI 10.2969/jmsj/01940508 - W. A. Kirk,
*A fixed point theorem for mappings which do not increase distances*, Amer. Math. Monthly**72**(1965), 1004–1006. MR**189009**, DOI 10.2307/2313345 - W. A. Kirk,
*Fixed point theorems for nonexpansive mappings satisfying certain boundary conditions*, Proc. Amer. Math. Soc.**50**(1975), 143–149. MR**380527**, DOI 10.1090/S0002-9939-1975-0380527-7 - R. H. Martin Jr.,
*Differential equations on closed subsets of a Banach space*, Trans. Amer. Math. Soc.**179**(1973), 399–414. MR**318991**, DOI 10.1090/S0002-9947-1973-0318991-4
W. V. Petryshyn and P. M. Fitzpatrick, - R. M. Redheffer,
*The theorems of Bony and Brezis on flow-invariant sets*, Amer. Math. Monthly**79**(1972), 740–747. MR**303024**, DOI 10.2307/2316263 - Simeon Reich,
*Fixed points in locally convex spaces*, Math. Z.**125**(1972), 17–31. MR**306989**, DOI 10.1007/BF01111112 - Simeon Reich,
*Remarks on fixed points*, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8)**52**(1972), 689–697 (English, with Italian summary). MR**331139** - Simeon Reich,
*Fixed points of condensing functions*, J. Math. Anal. Appl.**41**(1973), 460–467. MR**322609**, DOI 10.1016/0022-247X(73)90220-5 - Simeon Reich,
*Fixed points of non-expansive functions*, J. London Math. Soc. (2)**7**(1973), 5–10. MR**326511**, DOI 10.1112/jlms/s2-7.1.5
G. Vidossich, - James A. Yorke,
*Differential inequalities and non-Lipschitz scalar functions*, Math. Systems Theory**4**(1970), 140–153. MR**268476**, DOI 10.1007/BF01691098

*Fixed point theorems for outward maps*, Doctoral Thesis, Univ. of California, Los Angeles, Calif., 1965.

*Fixed point theorems for multivalued non-compact inward maps*(to appear).

*Existence comparison and asymptotic behavior of solutions of ordinary differential equations in finite and infinite dimensional Banach spaces*(to appear). —,

*Nonexistence of periodic solutions of differential equations and applications to zeros of nonlinear operators*(to appear).

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**215**(1976), 241-251 - MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0394329-4
- MathSciNet review: 0394329