Geodesics in piecewise linear manifolds
HTML articles powered by AMS MathViewer
- by David A. Stone PDF
- Trans. Amer. Math. Soc. 215 (1976), 1-44 Request permission
Abstract:
A simplicial complex M is metrized by assigning to each simplex $a \in {\mathbf {M}}$ a linear simplex ${a^\ast }$ in some Euclidean space ${{\mathbf {R}}^k}$ so that face relations correspond to isometries. An equivalence class of metrized complexes under the relation generated by subdivisions and isometries is called a metric complex; it consists primarily of a polyhedron M with an intrinsic metric ${\rho _{\mathbf {M}}}$. This paper studies geodesics in metric complexes. Let $P \in {\mathbf {M}}$; then the tangent space ${T_P}({\mathbf {M}})$ is canonically isometric to an orthogonal product of cones from $P,{{\mathbf {R}}^k} \times {\nu _P}({\mathbf {M}})$; once k is as large as possible. ${\nu _P}({\mathbf {M}})$ is called the normal geometry at P in M. Let $P\bar X$ be a tangent direction at P in ${\nu _P}({\mathbf {M}})$. I define numbers ${\kappa _ + }(P\bar X)$ and ${\kappa _ - }(P\bar X)$, called the maximum and minimum curvatures at P in the direction $P\bar X$. THEOREM. Let M be a complete, simply-connected metric complex which is a p.l. n-manifold without boundary. Assume ${\kappa _ + }(P\bar X) \leqslant 0$ for all $P \in {\mathbf {M}}$ and all $P\bar X \subseteq {\nu _P}({\mathbf {M}})$. Then M is p.l. isomorphic to ${{\mathbf {R}}^n}$. This is analogous to a well-known theorem for smooth manifolds by E. Cartan and J. Hadamard. THEOREM (ROUGHLY). Let M be a complete metric complex which is a p.l. n-manifold without boundary. Assume (1) there is a number $\kappa \geqslant 0$ such that ${\kappa _ - }(P\bar X) \geqslant \kappa$ whenever P is in the $(n - 2)$-skeleton of M and whenever $P\bar X \subseteq {\nu _P}({\mathbf {M}})$; (2) the simplexes of M are bounded in size and shape. Then M is compact. This is analogous to a weak form of a well-known theorem of S. B. Myers for smooth manifolds.References
- A. D. Aleksandrov and V. A. Zalgaller, Two-dimensional manifolds of bounded curvature. (Foundations of the intrinsic geometry of surfaces.), Trudy Mat. Inst. Steklov. 63 (1962), 262 (Russian). MR 0151930
- Thomas Banchoff, Critical points and curvature for embedded polyhedra, J. Differential Geometry 1 (1967), 245–256. MR 225327 É. Cartan, Leçons sur la géométrie des espaces de Riemann, 2ième éd., Gauthier-Villars, Paris, 1926, 1946. MR 8, 602. H. R. Gluck, Piecewise linear methods in Riemannian geometry, Univ. of Pennsylvania, 1972 (mimeographed notes). J. Hadamard, Les surfaces à courbures opposées, J. Math. Pures Appl. (5) 4 (1898), 27-73.
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331, DOI 10.1515/9781400881802
- S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401–404. MR 4518, DOI 10.1215/S0012-7094-41-00832-3
- Howard Osborn, Function algebras and the de Rham theorem in $\textrm {PL}$, Bull. Amer. Math. Soc. 77 (1971), 386–391. MR 276979, DOI 10.1090/S0002-9904-1971-12707-6
- Alexandre Preissmann, Quelques propriétés globales des espaces de Riemann, Comment. Math. Helv. 15 (1943), 175–216 (French). MR 10459, DOI 10.1007/BF02565638
- Willi Rinow, Die innere Geometrie der metrischen Räume, Die Grundlehren der mathematischen Wissenschaften, Band 105, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0123969, DOI 10.1007/978-3-662-11499-5
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744, DOI 10.1007/978-3-642-81735-9
- John Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481–488. MR 149457, DOI 10.1017/S0305004100036756
- David A. Stone, Sectional curvature in piecewise linear manifolds, Bull. Amer. Math. Soc. 79 (1973), 1060–1063. MR 320974, DOI 10.1090/S0002-9904-1973-13331-2 J. L. Synge, On the connectivity of spaces of positive curvature, Quart. J. Math. 7 (1936), 316-320.
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 215 (1976), 1-44
- MSC: Primary 53C20; Secondary 57C25
- DOI: https://doi.org/10.1090/S0002-9947-1976-0402648-8
- MathSciNet review: 0402648