## Universally torsionless and trace modules

HTML articles powered by AMS MathViewer

- by Gerald S. Garfinkel
- Trans. Amer. Math. Soc.
**215**(1976), 119-144 - DOI: https://doi.org/10.1090/S0002-9947-1976-0404334-7
- PDF | Request permission

## Abstract:

We study, over an arbitrary ring*R*, a class of right modules intermediate between the projective and the flat content modules. Over the ring of rational integers these modules are the locally free abelian groups. Over any commutative ring they are the modules which remain torsionless under all scalar extensions. They each possess a certain separability property exactly when

*R*is left semihereditary. We define

*M*to be universally torsionless if the natural map $M \otimes A \to {\operatorname {Hom}}({M^\ast },A)$ is monic for all left modules

*A*. We give various equivalent conditions for

*M*to be universally torsionless, one of which is that

*M*is a trace module, i.e. that $x \in M \cdot {M^\ast }(x)$ for all $x \in M$. We show the countably generated such modules are projective. Chase showed that rings over which products of projective or flat modules are also, respectively, projective or flat have other interesting properties and that they are characterized by certain left ideal theoretical conditions. We show similar results hold when the trace or content properties are preserved by products.

## References

- Felix Albrecht,
*On projective modules over semi-hereditary rings*, Proc. Amer. Math. Soc.**12**(1961), 638–639. MR**126470**, DOI 10.1090/S0002-9939-1961-0126470-X - Reinhold Baer,
*Abelian groups without elements of finite order*, Duke Math. J.**3**(1937), no. 1, 68–122. MR**1545974**, DOI 10.1215/S0012-7094-37-00308-9 - Hyman Bass,
*Projective modules over free groups are free*, J. Algebra**1**(1964), 367–373. MR**178032**, DOI 10.1016/0021-8693(64)90016-X
N. Bourbaki, - Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - Stephen U. Chase,
*Direct products of modules*, Trans. Amer. Math. Soc.**97**(1960), 457–473. MR**120260**, DOI 10.1090/S0002-9947-1960-0120260-3 - Phillip A. Griffith,
*Infinite abelian group theory*, University of Chicago Press, Chicago, Ill.-London, 1970. MR**0289638** - Michel Raynaud and Laurent Gruson,
*Critères de platitude et de projectivité. Techniques de “platification” d’un module*, Invent. Math.**13**(1971), 1–89 (French). MR**308104**, DOI 10.1007/BF01390094 - Irving Kaplansky,
*Projective modules*, Ann. of Math. (2)**68**(1958), 372–377. MR**0100017**, DOI 10.2307/1970252 - Jack Ohm and David E. Rush,
*The finiteness of $I$ when $\textit {R}[\textit {X}]/\textit {I}$ is flat*, Trans. Amer. Math. Soc.**171**(1972), 377–408. MR**306176**, DOI 10.1090/S0002-9947-1972-0306176-6 - Jack Ohm and David E. Rush,
*Content modules and algebras*, Math. Scand.**31**(1972), 49–68. MR**344289**, DOI 10.7146/math.scand.a-11411 - Bo T. Stenström,
*Pure submodules*, Ark. Mat.**7**(1967), 159–171 (1967). MR**223425**, DOI 10.1007/BF02591032 - Jean-Pierre Soublin,
*Anneaux et modules cohérents*, J. Algebra**15**(1970), 455–472 (French). MR**260799**, DOI 10.1016/0021-8693(70)90050-5

*Éléments de mathématique*. Fasc. XXVII.

*Algèbre commutative*. Chap. 1.

*Modules plats*, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR

**36**#146.

## Bibliographic Information

- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**215**(1976), 119-144 - MSC: Primary 16A50
- DOI: https://doi.org/10.1090/S0002-9947-1976-0404334-7
- MathSciNet review: 0404334