Balanced subgroups of abelian groups
HTML articles powered by AMS MathViewer
- by Roger H. Hunter
- Trans. Amer. Math. Soc. 215 (1976), 81-98
- DOI: https://doi.org/10.1090/S0002-9947-1976-0507068-3
- PDF | Request permission
Abstract:
The balanced subgroups of Fuchs are generalised to arbitrary abelian groups. Projectives and injectives with respect to general balanced exact sequences are classified; a new class of groups is introduced in order to classify these projectives.References
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Phillip Griffith, On a subfunctor of $\textrm {Ext}$, Arch. Math. (Basel) 21 (1970), 17–22. MR 262356, DOI 10.1007/BF01220870
- Paul Hill and Charles Megibben, On direct sums of countable groups and generalizations, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 183–206. MR 0242943 S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
- Charles Megibben, On $p^{\alpha }$-high injectives, Math. Z. 122 (1971), 104–110. MR 299678, DOI 10.1007/BF01110084
- R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182–212. MR 218452, DOI 10.1007/BF01135839
- Carol L. Walker, Projective classes of completely decomposable Abelian groups, Arch. Math. (Basel) 23 (1972), 581–588. MR 313422, DOI 10.1007/BF01304936
- Kyle D. Wallace, On mixed groups of torsion-free rank one with totally projective primary components, J. Algebra 17 (1971), 482–488. MR 272891, DOI 10.1016/0021-8693(71)90005-6
- R. B. Warfield Jr., Classification theorems for $p$-groups and modules over a discrete valuation ring, Bull. Amer. Math. Soc. 78 (1972), 88–92. MR 291284, DOI 10.1090/S0002-9904-1972-12870-2
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 215 (1976), 81-98
- MSC: Primary 20K40
- DOI: https://doi.org/10.1090/S0002-9947-1976-0507068-3
- MathSciNet review: 0507068