## Lie group representations and harmonic polynomials of a matrix variable

HTML articles powered by AMS MathViewer

- by Tuong Ton That
- Trans. Amer. Math. Soc.
**216**(1976), 1-46 - DOI: https://doi.org/10.1090/S0002-9947-1976-0399366-1
- PDF | Request permission

## Abstract:

The first part of this paper deals with problems concerning the symmetric algebra of complex-valued polynomial functions on the complex vector space of*n*by

*k*matrices. In this context, a generalization of the so-called “classical separation of variables theorem” for the symmetric algebra is obtained. The second part is devoted to the study of certain linear representations, on the above linear space (the symmetric algebra) and its subspaces, of the complex general linear group of order

*k*and of its subgroups, namely, the unitary group, and the real and complex special orthogonal groups. The results of the first part lead to generalizations of several well-known theorems in the theory of group representations. The above representation, of the real special orthogonal group, which arises from the right action of this group on the underlying vector space (of the symmetric algebra) of matrices, possesses interesting properties when restricted to the Stiefel manifold. The latter is defined as the orbit (under the action of the real special orthogonal group) of the

*n*by

*k*matrix formed by the first

*n*row vectors of the canonical basis of the

*k*-dimensional real Euclidean space. Thus the last part of this paper is involved with questions in harmonic analysis on this Stiefel manifold. In particular, an interesting orthogonal decomposition of the complex Hilbert space consisting of all square-integrable functions on the Stiefel manifold is also obtained.

## References

- Armand Borel,
*Linear algebraic groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR**0251042**
A. Borel and A. Weil, - Raoul Bott,
*Homogeneous vector bundles*, Ann. of Math. (2)**66**(1957), 203–248. MR**89473**, DOI 10.2307/1969996
É. Cartan, - Ronald R. Coifman and Guido Weiss,
*Analyse harmonique non-commutative sur certains espaces homogènes*, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR**0499948**, DOI 10.1007/BFb0058946 - Stephen S. Gelbart,
*A theory of Stiefel harmonics*, Trans. Amer. Math. Soc.**192**(1974), 29–50. MR**425519**, DOI 10.1090/S0002-9947-1974-0425519-8 - K. I. Gross and R. A. Kunze,
*Fourier decompositions of certain representations*, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Pure and Appl. Math., Vol. 8, Dekker, New York, 1972, pp. 119–139. MR**0427541**
—, - Harish-Chandra,
*Differential operators on a semisimple Lie algebra*, Amer. J. Math.**79**(1957), 87–120. MR**84104**, DOI 10.2307/2372387 - Sigurđur Helgason,
*Differential geometry and symmetric spaces*, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR**0145455** - Sigurđur Helgason,
*Invariants and fundamental functions*, Acta Math.**109**(1963), 241–258. MR**166304**, DOI 10.1007/BF02391814 - Carl S. Herz,
*Bessel functions of matrix argument*, Ann. of Math. (2)**61**(1955), 474–523. MR**69960**, DOI 10.2307/1969810 - Kenneth Hoffman and Ray Kunze,
*Linear algebra*, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0276251** - Bertram Kostant,
*Lie group representations on polynomial rings*, Amer. J. Math.**85**(1963), 327–404. MR**158024**, DOI 10.2307/2373130 - Bertram Kostant,
*Lie algebra cohomology and the generalized Borel-Weil theorem*, Ann. of Math. (2)**74**(1961), 329–387. MR**142696**, DOI 10.2307/1970237 - Daniel A. Levine,
*Systems of singular integral operators on spheres*, Trans. Amer. Math. Soc.**144**(1969), 493–522. MR**412743**, DOI 10.1090/S0002-9947-1969-0412743-1 - Hans Maass,
*Zur Theorie der harmonischen Formen*, Math. Ann.**137**(1959), 142–149 (German). MR**121512**, DOI 10.1007/BF01343242 - Hans Maass,
*Spherical functions and quadratic forms*, J. Indian Math. Soc. (N.S.)**20**(1956), 117–162. MR**86837**
M. A. Naĭmark, - Elias M. Stein and Guido Weiss,
*Introduction to Fourier analysis on Euclidean spaces*, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR**0304972** - Robert S. Strichartz,
*The explicit Fourier decomposition of $L^{2}(\textrm {SO}(n)/\textrm {SO}(n-m))$*, Canadian J. Math.**27**(1975), 294–310. MR**380277**, DOI 10.4153/CJM-1975-036-x
T. Ton-That, - N. Ja. Vilenkin,
*Spetsial′nye funktsii i teoriya predstavleniĭ grupp*, Izdat. “Nauka”, Moscow, 1965 (Russian). MR**0209523** - Nolan R. Wallach,
*Cyclic vectors and irreducibility for principal series representations*, Trans. Amer. Math. Soc.**158**(1971), 107–113. MR**281844**, DOI 10.1090/S0002-9947-1971-0281844-2 - Hermann Weyl,
*The classical groups*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR**1488158** - D. P. Želobenko,
*On the theory of representations of complex and real Lie groups*, Trudy Moskov. Mat. Obšč.**12**(1963), 53–98 (Russian). MR**0165039** - D. P. Želobenko,
*Classical groups. Spectral analysis of finite-dimensional representations*, Uspehi Mat. Nauk**17**(1962), no. 1 (103), 27–120 (Russian). MR**0136664**

*Séminaire Bourbaki 6ième année*: 1953/54, Exposé 100 par J.-P. Serre:

*Répresentations linéaires et espaces homogènes Kähleriens des groupes de Lie compacts*, Secrétariat mathématique, Paris, 1959. MR

**28**#1087.

*Leçons sur la géométrie projective complexe*, 2ième éd., Gauthier-Villars, Paris, 1950. MR

**12**, 849. C. Chevalley,

*Theory of Lie groups*. Vol. I, Princeton Math. Ser., vol. 8, Princeton Univ. Press. Princeton, N. J., 1946. MR

**7**, 412.

*Bessel functions and representation theory*. I (in preparation).

*Normed rings*, 2nd rev. ed., “Nauka", Moscow, 1968; English transl., Wolters-Noordhoff, Groningen, 1972.

*Lie group representations and harmonic polynomials of a matrix variable*, Ph.D Dissertation, University of California, Irvine, 1974.

## Bibliographic Information

- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**216**(1976), 1-46 - MSC: Primary 22E45
- DOI: https://doi.org/10.1090/S0002-9947-1976-0399366-1
- MathSciNet review: 0399366