Estimates for the $\bar \partial$-Neumann operator in weighted Hilbert spaces
HTML articles powered by AMS MathViewer
- by Sidney L. Hantler
- Trans. Amer. Math. Soc. 217 (1976), 395-406
- DOI: https://doi.org/10.1090/S0002-9947-1976-0393535-2
- PDF | Request permission
Abstract:
Estimates for the $\bar \partial$ operator are used to derive estimates for the Neumann operator in weighted Hilbert spaces. The technique is similar to that used to prove regularity of solutions of elliptic partial differential equations. A priori estimates are first obtained for smooth compactly supported forms and these estimates are then extended by suitable approximation results. These estimates are applied to give new bounds for the reproducing kernels in the subspaces of entire functions.References
- Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR 0038439, DOI 10.1090/surv/005 S. L. Hantler, Estimates for reproducing kernels in weighted Hilbert spaces of entire functions, RC 4926, IBM T. J. Watson Research Center, Yorktown Heights, New York, 1974, 117 pp. —, Polynomial approximation in certain weighted Hilbert spaces of entire functions (to appear).
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775
- Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158. MR 294694, DOI 10.1007/BF01419622 I. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds. I, II, Ann. of Math. (2) 78 (1963), 112-148; ibid. (2) 79 (1964), 450-472. MR 27 #2999; 34 #8010. D. J. Newman and H. S. Shapiro, A Hilbert space of entire functions related to the operational calculus, University of Michigan, Ann Arbor, Mich., 1964, 92 pp. (mimeographed notes).
- B. A. Taylor, On weighted polynomial approximation of entire functions, Pacific J. Math. 36 (1971), 523–539. MR 284801, DOI 10.2140/pjm.1971.36.523
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 217 (1976), 395-406
- MSC: Primary 32A15; Secondary 30A82
- DOI: https://doi.org/10.1090/S0002-9947-1976-0393535-2
- MathSciNet review: 0393535