## Representations of the $l^{1}$-algebra of an inverse semigroup

HTML articles powered by AMS MathViewer

- by Bruce A. Barnes PDF
- Trans. Amer. Math. Soc.
**218**(1976), 361-396 Request permission

## Abstract:

In this paper the star representations on Hilbert space of the ${l^1}$-algebra of an inverse semigroup are studied. It is shown that the set of all irreducible star representations form a separating family for the ${l^1}$-algebra. Then specific examples of star representations are constructed, and some theory of star representations is developed for the ${l^1}$-algebra of a number of the most important examples of inverse semigroups.## References

- B. A. Barnes and J. Duncan,
*The Banach algebra $l^{1}(S)$*, J. Functional Analysis**18**(1975), 96–113. MR**377415**, DOI 10.1016/0022-1236(75)90032-4 - A. H. Clifford and G. B. Preston,
*The algebraic theory of semigroups. Vol. I*, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR**0132791** - A. H. Clifford and G. B. Preston,
*The algebraic theory of semigroups. Vol. II*, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1967. MR**0218472** - L. A. Coburn,
*The $C^{\ast }$-algebra generated by an isometry*, Bull. Amer. Math. Soc.**73**(1967), 722–726. MR**213906**, DOI 10.1090/S0002-9904-1967-11845-7 - Charles W. Curtis and Irving Reiner,
*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0144979** - Jacques Dixmier,
*Les $C^{\ast }$-algèbres et leurs représentations*, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR**0171173** - Peter A. Fillmore,
*Notes on operator theory*, Van Nostrand Reinhold Mathematical Studies, No. 30, Van Nostrand Reinhold Co., New York-London-Melbourne, 1970. MR**0257765** - Paul R. Halmos,
*A Hilbert space problem book*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0208368** - Edwin Hewitt and Kenneth A. Ross,
*Abstract harmonic analysis. Vol. I*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR**551496**, DOI 10.1007/978-1-4419-8638-2
E. Hewitt and H. S. Zuckerman, - Edwin Hewitt and Herbert S. Zuckerman,
*Finite dimensional convolution algebras*, Acta Math.**93**(1955), 67–119. MR**77522**, DOI 10.1007/BF02392520
—, - Edwin Hewitt and Herbert S. Zuckerman,
*The irreducible representations of a semi-group related to the symmetric group*, Illinois J. Math.**1**(1957), 188–213. MR**86819** - Richard V. Kadison and I. M. Singer,
*Extensions of pure states*, Amer. J. Math.**81**(1959), 383–400. MR**123922**, DOI 10.2307/2372748 - Irving Kaplansky,
*Representations of separable algebras*, Duke Math. J.**19**(1952), 219–222. MR**45701** - W. D. Munn,
*On semigroup algebras*, Proc. Cambridge Philos. Soc.**51**(1955), 1–15. MR**66355**, DOI 10.1017/s0305004100029868 - Charles E. Rickart,
*General theory of Banach algebras*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0115101** - Alex Rosenberg,
*The number of irreducible representations of simple rings with no minimal ideals*, Amer. J. Math.**75**(1953), 523–530. MR**57477**, DOI 10.2307/2372501

*On convolution algebras*, Proc. Internat. Congr. Math. (Cambridge, Mass., 1950), vol. I, Amer. Math. Soc., Providence, R. I., 1952, p. 455.

*The*${l_1}$-

*algebra of a commutative semigroup*, Trans. Amer. Math. Soc.

**83**(1956), 70-97. MR

**18**, 465.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**218**(1976), 361-396 - MSC: Primary 43A20; Secondary 43A65
- DOI: https://doi.org/10.1090/S0002-9947-1976-0397310-4
- MathSciNet review: 0397310