CERTAIN CONTINUA IN S^n OF THE SAME SHAPE
HAVE HOMEOMORPHIC COMPLEMENTS(1)

BY
VO-THANH-LIEM

ABSTRACT. As a consequence of Theorem 1 of this paper, we see that
if X and Y are globally 1-alg continua in S^n ($n \geq 5$) having the shape of the
real projective space P^k ($k \neq 2, 2k + 2 < n$), then $S^n - X \approx S^n - Y$. (For P^1
$= S^1$, this establishes the last case of such a result for spheres.) We also show
that if X and Y are globally 1-alg continua in S^n, $n \geq 6$, which have the shape
of a codimension > 3, closed, $0 < (2m - n + 1)$-connected, PL-manifold M^m,
then $S^n - X \approx S^n - Y$.

1. Introduction. The problem of classifying the shape of compacta in S^n
(or E^n) in terms of their complements in S^n (or E^n) has been studied by a num-
ber of people.

In [3], Chapman proved that two Z-sets in the Hilbert cube have the same
shape if and only if their complements are homeomorphic. Working with Z_k-
sets, Geoghegan and Summerhill [10] improved the finite dimensional theorem
of Chapman [4] by reducing the condition $n \geq 3k + 3$ to $n \geq 2k + 2$.

Rushing, in [16], proved that for a continuum X in S^n ($n \geq 5$), $\text{Sh}(X) =
\text{Sh}(S^k)$ (S^k is the standard k-sphere in S^n) is equivalent to $S^n - X \approx S^n - S^k$,
if X is globally 1-alg in S^n and $k \neq 1$ ($S^n - X$ must have homotopy type of S^1
if $k = n - 2$). He also gave an example to show that $S^n - X \approx S^n - S^1$ is not
sufficient to imply $\text{Sh}(X) = \text{Sh}(S^1)$.

In [5], Coram, Daverman and Duvall proved that if $\dim X \leq n - 3, X \subset
E^n$ satisfies small loop condition (SLC) and X has the shape of a finite complex
K in the trivial range, then X has a neighborhood N in E^n such that $N - X \approx
\partial N \times [0, 1)$, where N is also a regular neighborhood of a copy of K in E^n ($n \geq 5$).

Recently, Coram and Duvall have proved [6] the equivalence of $S^n - X \approx
S^n - Y$ and $\text{Sh}(X) = \text{Sh}(Y)$, where X, Y are sphere-like continua in S^n ($n \geq 5$)
(see definition in [15]) satisfying SLC and $\max \{\dim X, \dim Y\} \leq n - 4$.

Received by the editors February 17, 1975.

AMS (MOS) subject classifications (1970). Primary 57A15, 57A35; Secondary 57C20,
57C30, 57C40.

Key words and phrases. Stable end, H-cobordism, regular neighborhood, shape, glo-
ally 1-alg.

(1) This research will constitute a part of the author's doctoral dissertation under the
direction of Professor T. B. Rushing at the University of Utah.

Copyright © 1976, American Mathematical Society

207
However, notice that the class of sphere-like continua is much smaller than the class of continua having the shape of sphere-like continua.

In this note, we consider globally 1-alg continua in S^n having either the shape of finite complexes in the trivial range or the shape of closed, simply connected PL-manifolds of codimension ≥ 3. As a result, we solve the S^1-case of Rushing [16]. Thus, we generalize the main result of Daverman [8].

I am very grateful to Professor T. B. Rushing for many helpful questions and discussions concerning this paper. I also thank Dr. R. Stern for his help.

2. Notation and definitions. Throughout this note, we use the following notations:

\approx Homeomorphic or isomorphic
\cong Homotopy equivalence or homotopic
\sim Homologous
∂V, Int V Boundary, interior of a manifold V
i or $A \subset B$ Inclusion map
$f_\ast, f_\#$ Induced maps on homotopy, homology groups
H_\ast Singular homology, \mathbb{Z} coefficients
\tilde{H}_\ast Čech cohomology, \mathbb{Z} coefficients

For basic shape theory results, we refer to [1] and [15]. For convenience, in this paper we use both shape theories [1] and [15] as is justified in [22].

A continuum X in S^n is said to be globally 1-alg in S^n if for every neighborhood U of X in S^n, there is a neighborhood V of $X(V \subset U)$ such that if $f : S^1 \to V - X$, $f \sim 0$ in $V - X$, then $f \simeq 0$ in $U - X$.

An inverse sequence of groups

$$G_1 \overset{i_1}{\leftarrow} G_2 \overset{i_2}{\leftarrow} \cdots$$

is said to be constant if we have

$$\text{Im } i_1 \overset{i_1}{\sim} \text{Im } i_2 \overset{i_2}{\sim} \text{Im } i_3 \overset{i_3}{\sim} \cdots.$$

An inverse sequence of groups

$$G_1 \overset{i_1}{\leftarrow} G_2 \overset{i_2}{\leftarrow} \cdots$$

is said to be stable if it has a constant subsequence.

Let X be a continuum in S^n. If $S^n - X$ is connected, then $S^n - X$ has a unique end e. According to Siebenmann [17, Chapter III], the fundamental group $\pi_1(e)$ is stable if there is a nested sequence $\{V_j\}$ of connected neighborhoods of X such that the inverse sequence

$$\pi_1(V_1 - X) \overset{i_1}{\leftarrow} \pi_1(V_2 - X) \overset{i_2}{\leftarrow} \cdots$$

is constant, where $i_q : (V_{q+1} - X) \subset (V_q - X)$.

In this case, $\pi_1(e)$ is said to be isomorphic to Im $i_{1\ast}$.

By a closed manifold, we mean a compact manifold without boundary.

For definitions of regular neighborhood, PL-embedding, PL-homeomorphism, etc., we refer to Hudson [12].

A complex \mathcal{K} in S^n (or E^n) is said to be in trivial range if $2 \dim \mathcal{K} + 2 \leq n$.

A continuum is a compact, connected space.

Let $\{\gamma_1, \ldots, \gamma_q\}$ be a family of pairwise disjoint simple closed curves in the interior of a 2-simplex Δ^2. Let F be the closure of the component of $\Delta^2 - \bigcup_{i=1}^q \gamma_i$ which contains $\partial \Delta^2$. The components of ∂F other than $\partial \Delta^2$ are the outermost elements of $\{\gamma_1, \ldots, \gamma_q\}$.

Theorem 1. Let X be a globally 1-alg continuum in S^n, $n \geq 5$, having the shape of a finite complex \mathcal{K} ($2k + 2 \leq n$) such that $\pi_1(\mathcal{K})$ is abelian. If $\pi_1(\mathcal{K}) = 0$ or $\pi_2(\mathcal{K}) = 0$, then X has a neighborhood N, which is a regular neighborhood of a copy \mathcal{K}_1 of \mathcal{K} in S^n, such that $N - X \approx \partial N \times [0, 1)$ ($\approx N - \mathcal{K}_1$).

As an immediate consequence of Theorem 1, Lemma 4.3 of Geoghegan and Summerhill [10], and the unknottedness of trivial-range complexes [11], we obtain the following result.

Theorem 2. Let X, Y be globally 1-alg continua in S^n, $n \geq 5$, having the shape of finite complexes \mathcal{K}, \mathcal{L} (respectively) in trivial range such that $\pi_1(\mathcal{K}), \pi_1(\mathcal{L})$ are abelian. If either $\pi_1(\mathcal{K}) = \pi_1(\mathcal{L}) = 0$ or $\pi_2(\mathcal{K}) = \pi_2(\mathcal{L}) = 0$, then $\text{Sh}(X) = \text{Sh}(Y)$ if and only if $S^n - X \approx S^n - Y$.

Corollary 1. Let X, Y be globally 1-alg continua in S^n, $n \geq 5$, having the shape of the projective space P^k, $2k + 2 \leq n, k \neq 2$. Then, $S^n - X \approx S^n - Y$.

Corollary 2. Let X be a globally 1-alg continuum in S^n, $n \geq 5$, then $\text{Sh}(X) = \text{Sh}(T^k)$ if and only if $S^n - X \approx S^n - T^k$ and X has the shape of a trivial-range finite complex \mathcal{K}, with $\pi_2(\mathcal{K}) = 0$ and $\pi_1(\mathcal{K})$ is abelian, where $2k + 2 \leq n$.

Remark 1. This corollary generalizes the weakly flat 1-spheres theorem of Daverman [8, Theorem 1].

Remark 2. Using J. Stallings' theorem in M. A. Kervaire [14, Theorem V] and imitating an example in [16], we can construct a globally 1-alg connected polyhedron X in S^n such that $\text{Sh}(X) \neq \text{Sh}(S^1)$ but $S^n - S^1 \approx S^n - X$ and $\pi_2(X) \neq 0$ (even though $\pi_1(X) \approx \pi_1(S^1) \approx Z$).

Theorem 3. Let X be a globally 1-alg continuum in S^n ($n \geq 6$), having the shape of a simply connected, finite complex \mathcal{K}, $\dim \mathcal{K} \leq n - 3$. Then, $S^n - X$ has a collar at the end e, i.e. there is a PL-manifold neighborhood W of X in S^n such that $W - X \approx \partial W \times [0, 1)$.

(Furthermore, W and K have the same homotopy type.)
Corollary 3. Let X be a continuum in S^n ($n \geq 6$) as in Theorem 3 above. If either $2 \dim k + 1 < n$ or K is a closed PL-manifold, then $S^n - X \approx S^n - K_1$, where K_1 is the image of a PL-embedding of K into S^n.

The following corollary follows from Irwin's embedding theorem [13] and Zeeman's unknotting theorem [20].

Corollary 4. Let X and Y be globally 1-alg continua in S^n ($n \geq 6$), which have the shape of a simply connected codimension ≥ 3, closed, $(2m - n + 1)$-connected PL-manifold M^m. Then, $S^n - X \approx S^n - Y$.

Remark 3. For $n \geq 6$, Corollary 4 generalizes the weakly flat k-spheres theorem of Duvall [9, Theorem 2.1], and it also generalizes Rushing [16, Theorem 3] for $2 \leq k \leq n - 3$ and $n \geq 6$.

4. Details of the proof. Let X be a continuum in S^n. Suppose that X has the shape of a finite complex K^k. By Mardešić and Segal's definition of shape [15] (as observed [5]), we can find a cofinal sequence $\{V_i\}_{i=1}^{\infty}$ of connected neighborhoods of X in S^n with $V_{i+1} \subset V_i$, for each i, and maps $f_i:K \to V_i$, $g_i:V_i \to K$ such that if β^j denotes the inclusion map of V_i into V_j for $i \geq j$, then

1. f_i is a PL embedding for each i, if $2k + 1 < n$,
2. $f_i g_i \approx \beta^j$ if $i > j$,
3. $g_i \beta^j f_i \approx 1_K$, and
4. $\beta^j f_i \approx f_j$.

Lemma 1. The following sequence is constant:

$$\cdots \longrightarrow H_1(V_{j+1}) \xrightarrow{(\beta^{j+1},1)_\#} H_1(V_j) \xrightarrow{(\beta^{j},1-1)_\#} H_1(V_{j-1}) \longrightarrow \cdots$$

and $\lim H_1(V_j) \approx H_1(K)$.

Proof. The following commutative diagram

$$
\begin{array}{c}
\begin{array}{ccc}
H_1(V_{j+1}) & \xrightarrow{(\beta^{j+1},1)_\#} & H_1(V_j) & \xrightarrow{(\beta^{j},1-1)_\#} & H_1(V_{j-1}) \\
(f_{j+1})_\# & (g_{j+1})_\# & (f_{j})_\# & (g_{j})_\# & (f_{j-1})_\# \\
H_1(K) & \xrightarrow{1_\#} & H_1(K) & \xrightarrow{1_\#} & H_1(K)
\end{array}
\end{array}
$$

gives

1. $(g_{j+1})_\#, (g_{j})_\#$ are onto,
2. $(f_{j})_\#, (f_{j-1})_\#$ are 1-1.

We have
CONTINUA IN S^n OF THE SAME SHAPE

\[
\text{Im}(\beta^{j+1,i})_\# = \text{Im} \left[(f_j)_\# \circ (g_{j+1})_\# \right] = \text{Im}(f_j)_\#
\]
\[
\approx (g_{j+1})_\# (\text{Im}(f_j)_\#) = \text{Im}(f_j)_\# (= H_1(K))
\]
\[
\quad \text{(since } (g_{j+1})_\# (f_j)_\# = 1\#)\]
\[
\approx (f_{j-1})_\# (\text{Im}(g_{j+1})_\#) \quad \text{since } (f_{j-1})_\# \text{ is 1-1}
\]
\[
= \text{Im}(\beta^{j-1,i})_\#.
\]

Therefore, $(\beta^{j,i})_\#: \text{Im}(\beta^{j+1,i})_\# \rightarrow \text{Im}(\beta^{j-1,i})_\#$ is an isomorphism. That means the given sequence is constant. It is also clear that $H_1(V_j) \approx H_1(K)$.

Lemma 2. Let X be a continuum in S^n such that $\text{Sh}(X) = \text{Sh}(K)$, where K is a finite complex. Then $H_q(V, V - X) = 0$ for all $q \leq n - \text{dim } K - 1$, and neighborhoods V of X in S^n.

Proof. Indeed, we have
\[
H_q(V, V - X) \approx \tilde{H}^{n-q}(X) \quad [19, \text{Theorem 6.2.17}]
\]
\[
\approx \tilde{H}^{n-q}(X) \quad [19, \text{Corollary 6.8.8}]
\]
\[
\approx \tilde{H}^{n-q}(K) \quad [15, \text{Theorem 16}]
\]
\[
= 0 \quad \text{if } n - q > \text{dim } K \quad \text{(i.e., } q < n - \text{dim } K - 1).\]

Lemma 3. Let X be a continuum in S^n having the shape of a finite complex K, $\text{dim } K \leq n - 3$, then the following sequence is constant.

\[
\cdots \rightarrow H_1(V_{j+1} - X) \quad (i_j)_\# \rightarrow H_1(V_j - X) \rightarrow \cdots
\]

and $H_1(\epsilon) \equiv \lim H_1(V_j - X) \approx H_1(K)$.

Proof. By Lemma 2, we have the following commutative diagram:

\[
\begin{array}{ccc}
0 \rightarrow H_1(V_{j+1} - X) & \approx & H_1(V_{j+1}) \rightarrow 0 \\
\downarrow (i_j)_\# & & \downarrow (\beta^{j+1,i})_\# \\
0 \rightarrow H_1(V_j - X) & \approx & H_1(V_j) \rightarrow 0
\end{array}
\]

The lemma follows easily from Lemma 1.

Lemma 4. Let X be a continuum in S^n having the shape of a finite complex K, with $\text{dim } K \leq n - 3$. If X is globally 1-alg in S^n, then the end ϵ of $S^n - X$ is stable and $\pi_1(\epsilon) \approx H_1(K)$.

Proof. (The proof of this lemma is similar to the last part of the proof of Lemma 1 in [7].)

We can choose a subsequence $\{V_{j_p}\}$ of $\{V_j\}$ such that every loop in $(V_{j_{p+1}} - X)$ which is null-homologous in $(V_{j_{p+1}} - X)$ is null-homotopic in
Thus, we may assume the sequence \(\{ V_j \} \) has this property.

Using the following commutative diagram

\[
\begin{array}{ccc}
\pi_1(V_{j+1} - X) & \xrightarrow{\varphi_{j+1}} & H_1(V_{j+1} - X) \\
| & | & | \\
(i_j)_* & \downarrow & (i_j)_# \\
\pi_1(V_j - X) & \xrightarrow{\varphi_j} & H_1(V_j - X) \\
| & | & | \\
(i_{j-1})_* & \downarrow & (i_{j-1})_# \\
\pi_1(V_{j-1} - X) & \xrightarrow{\varphi_{j-1}} & H_1(V_{j-1} - X)
\end{array}
\]

where \(\varphi_j \)'s are Hurewicz's homomorphisms, the globally 1-alg property implies that

\[
\varphi_j|\operatorname{Im}(i_j)_* : \operatorname{Im}(i_j)_* \rightarrow \operatorname{Im}(i_{j-1})_#
\]

is an isomorphism, for each \(j \), by the diagram chasing argument.

Therefore,

\[
(i_j)_*|\operatorname{Im}(i_j)_* : \operatorname{Im}(i_j)_* \rightarrow \operatorname{Im}(i_{j-1})_#
\]

is an isomorphism and \(\operatorname{Im}(i_j)_* \approx H_1(K) \).

Thus, the open PL-manifold \(S^n - X \) has a stable isolated end \(e \) with \(\pi_1(e) \approx H_1(K) \) being finitely presented. By Siebenmann [17, Theorem 3.10], there exist arbitrarily small 1-neighborhoods of \(e \), if \(n \geq 5 \); i.e., for every compact subset \(C \) of \(S^n - X \), there is a neighborhood \(V \) of \(X \) in \(S^n \) such that

1. \(V \cap C = \emptyset \),
2. the natural map \(\pi_1(e) \rightarrow \pi_1(V - X) \) is an isomorphism,
3. the inclusion map \(\partial V \subset V - X \) gives an isomorphism \(\pi_1(\partial V) \rightarrow \pi_1(V - X) \),
4. \(\partial V \) and \(V - X \) are connected.

Lemma 5. Let \(X \) be a continuum in \(S^n \) \((n \geq 5)\) having the shape of a finite complex \(K \), with \(\pi_1(K) \) abelian and \(\dim K \leq n - 3 \). If \(X \) is globally 1-alg in \(S^n \), then given any neighborhood \(U \) of \(X \) in \(S^n \), there is a neighborhood \(V \) of \(X(V \subset U) \) such that

1. \(V - X \) is a 1-neighborhood of the end, and
2. \(i_* : \pi_1(V - X) \rightarrow \pi_1(V) \) is an isomorphism.

Proof. Let \(W \) be a neighborhood of \(X \) such that

1. \(W \subset U \), and
2. \(W - X \) is a 1-neighborhood of the end.

Let \(i > j \) be two integers and \(V \) a neighborhood of \(X \) such that

1. \(V \subset V_i \subset V_j \subset W \subset U \), and
2. \(\pi_1(V_j - X) \approx H_1(K) \).
3. the natural map \(\pi_1(e) \rightarrow \pi_1(V - X) \) is an isomorphism,
4. the inclusion map \(\partial V \subset V - X \) gives an isomorphism \(\pi_1(\partial V) \rightarrow \pi_1(V - X) \),
5. \(\partial V \) and \(V - X \) are connected.
(2) $V - X$ is a 1-neighborhood of the end.

(V_p, V_j satisfies conditions (2), (3), (4) preceding Lemma 1.)

First, by Lemmas 2 and 4, and the following commutative diagram, we have $i_* : \pi_1(V - X) \rightarrow \pi_1(V)$ is 1-1, since $V - X$ is a 1-neighborhood of the end.

\[
\pi_1(V - X) \rightarrow \pi_1(V) \\
\approx \\
H_1(V - X) \approx H_1(V)
\]

Then, $\beta^w_* i_* : \pi_1(V - X) \rightarrow \pi_1(W)(\beta^w_* : V \subset W)$ is also 1-1, by the following commutative diagram.

\[
\pi_1(V - X) \rightarrow \pi_1(V) \\
\approx \\
\pi_1(W - X) \rightarrow \pi_1(W)
\]

Hence $(f_j)_* (g_i | V)_* i_*$ is one-to-one, since $\beta^w_* = (f_j)_* (g_i | V)_*$ by the following commutative diagram.

We claim that $(g_i | V)_* i_*$ is one-to-one. Hence, it will follow that $\pi_1(V)$ is abelian, since $\pi_1(K)$ is abelian. Thus, i_* is an isomorphism by the following commutative diagram.

\[
\pi_1(V) \rightarrow \pi_1(V_j) \rightarrow \pi_1(W) \\
\beta^w_*
\]

We now prove the claim. Let $\varphi: \partial \Delta^2 \rightarrow V$ be a loop representing an element of $\ker(g_i | V)_*$. Then $[\varphi] \in \ker \beta^w_*$ since $\beta^w_* = (f_j)_* (g_i | V)_*$; i.e., $\varphi \approx 0$ in W.

Let $\varphi: \Delta^2 \rightarrow W$ be an extension of φ over Δ^2 into W. We may assume that $\varphi(\partial \Delta^2) \cap \partial V = \emptyset$ and $\varphi^{-1}(\partial V)$ is a family of disjoint simple closed curves in $\text{Int} \Delta^2$.

Let $\Gamma_1, \ldots, \Gamma_s$ be outermost loops in this family, then each $\varphi(\Gamma_j)$ bounds a disk in W; hence $\varphi(\Gamma_j) \approx 0$ in W, $j = 1, \ldots, s$. Thus, $\varphi(\Gamma_j) \approx 0$ in $V - X$.
for \(j = 1, \ldots, s \), since \(\overline{\varphi}(\Gamma_j) \subset V - X \) and \(\rho_*^{V_W} \circ i_* : \pi_1(V - X) \to \pi_1(W) \) is one-to-one.

Therefore, by changing the value of \(\overline{\varphi} \) inside \(\Gamma_j \), for \(j = 1, \ldots, s \), we can define \(\overline{\varphi} \) to obtain an extension of \(\varphi \) in \(V \) over \(\Delta^2 \). In other words, \(\varphi \approx 0 \) in \(V \).

Lemma 6. Let \(X \) be a continuum in \(S^n \), \(n \geq 5 \), such that

1. \(\text{Sh}(X) = \text{Sh}(K) \), where \(K \) is a finite complex with \(\pi_1(K) \) abelian and \(\dim K \leq n - 3 \),
2. \(X \) is globally 1-alg in \(S^n \),
3. Either \(\pi_1(K) = 0 \) or \(\pi_2(K) = 0 \).

Then, given a neighborhood \(U \) of \(X \), there is a neighborhood \(V \) of \(X(V \subset U) \) such that \(\pi_i(V, V - X) = 0 \), for \(i = 0, 1, 2 \).

Proof. Let \(V \) be a neighborhood of \(X \) as in Lemma 5.

(i) 1-connectedness is trivial, since

\[
H_0(V, V - X) \cong \pi_1(V) \approx 0, \quad \text{and}
\]

\[
\pi_1(V - X) \approx \pi_1(V) \to \pi_1(V, V - X) \to 0.
\]

(ii) To show \(\pi_2(V, V - X) = 0 \).

Case 1. \(\pi_1(K) = 0 \). We have

\[
\pi_1(V) \approx \pi_1(V - X) \approx \pi_1(e) \approx H_1(K) = 0.
\]

Hence, the relative Hurewicz isomorphism theorem [19, Theorem 7.5.4] gives

\[
\pi_2(V, V - X) \approx H_2(V, V - X) = 0.
\]

Case 2. \(\pi_2(K) = 0 \). We choose \(V' \) to be a small neighborhood of \(X \) such that

1. \(V' \subset \text{Int} \, V \),
2. \(V' - X \) is a 1-neighborhood of the end satisfying Lemma 5, and
3. \(\iota_* : \pi_2(V') \to \pi_2(V) \) is trivial. (From the fact that \(\pi_2(K) = 0 \) and \(\text{Sh}(X) = \text{Sh}(K) \).)

Now, let \(\varphi : (\Delta^2, \partial \Delta^2) \to (V, V - X) \) be a map representing an element of \(\pi_2(V, V - X) \). We may assume \(\varphi(\partial \Delta^2) \subset \partial V \).

Let \(T \) be a fine subdivision of \(\Delta^2 \) so that for every \(\sigma \in T \) we have \(\varphi(\sigma) \subset \text{Int} \, V' \), if \(\varphi(\sigma) \cap X \neq \emptyset \).

We are through if we have a map \(G : \Delta^2 \times [0, 1] \to V \) satisfying

1. \(G|\Delta^2 \times 0 = \varphi \),
2. \(G(\Delta^2 \times 1) \subset V - X \),
3. \(G(\partial \Delta^2 \times 1) \subset V - X \).

First, we define \(G : (T \times 0) \cup (T^{(1)} \times [0, 1]) \to V \) as follows (\(T^{(1)} \) is the 1-skeleton of \(T \)).

(i) \(G|T \times 0 = \varphi \).
CONTINUOUS IN S^n OF THE SAME SHAPE

(ii) Let v be a vertex of T. Then

(a) $G(v \times [0, 1]) = \varphi(v)$, if $\varphi(v) \not\in X$.

(b) $G(v \times [0, 1])$ is an arc α_v in V' joining $\varphi(v)$ and $G(v \times 1) \in V' - X$, if $\varphi(v) \in X$.

(iii) Let $\langle uv \rangle$ be a 1-simplex of T. Then

(a) $G(x, t) = \varphi(x)$ for every $x \in \langle uv \rangle$, $t \in [0, 1]$, if $\varphi(\langle uv \rangle) \cap X = \emptyset$.

(b) If $\varphi(\langle uv \rangle) \cap X \neq \emptyset$, then $G(\langle uv \rangle \times 1)$ will be an arc α_{uv} in $V' - X$ joining $G(u \times 1)$ and $G(v \times 1)$ such that the loop $G(\langle uv \rangle \times 0) \cup \alpha_u \cup \alpha_{uv} \cup \alpha_v$ is null-homotopic in V' (first we join $G(u \times 1)$ and $G(v \times 1)$ by an arc in $V' - X$, then we use the fact that $\pi_1(V' - X) \cong \pi_1(V')$). Therefore, we can extend G over $\langle uv \rangle \times [0, 1]$ into V'.

Similarly for all 1-simplexes of T.

Secondly, we define $G : T \times [0, 1] \to V$ as follows. Let σ be a 2-simplex of T.

(a) If $\varphi(\sigma) \cap X = \emptyset$, $G(x, t) = \varphi(x)$, for every $x \in \sigma$ and $t \in [0, 1]$.

(b) If $\varphi(\sigma) \cap X \neq \emptyset$, then G has been already defined on $(\sigma \times 0) \cup (\partial \sigma \times [0, 1])$ into V' with $G(\partial \sigma \times 1) \subset V' - X$. It is clear that $G|\partial \sigma \times 1 \cong 0$ in V', hence $G|\partial \sigma \times 1 \cong 0$ in $V' - X$. Therefore, we can extend G over $\sigma \times 1$ into $V' - X$. Thus, $G(\partial(\sigma \times [0, 1])) \subset V'$. Now G can be extended over $\sigma \times [0, 1]$ into V by the choice of V'.

Similarly for all 2-simplexes of T, we can define a map $G : T \times [0, 1] \to V$ such that $G|T \times 0 = \varphi$ and $G(T \times 1) \subset V - X$ as we desired.

Proof of Theorem 1. The proof follows by combining Lemma 6 with the following result, the proof of which is intrinsic in [5].

Lemma 7 (Coram, Daverman, Duvall). Let X be a compactum in S^n, $n \geq 5$, which has the shape of a finite complex in the trivial range. Suppose that given a neighborhood U of X in S^n, there exists a neighborhood V such that $X \subset V \subset U$ and $\pi_i(V, V - X) = 0$ for $i = 0, 1, 2$. Then, X has a neighborhood N, which is a regular neighborhood of a copy K_1 of K in S^n, such that $N - X \approx \partial N \times [0, 1] (\approx N - K_1)$.

Proof of Theorem 2. Since $S^n - X \approx S^n - K_1$ and $S^n - Y \approx S^n - L_1$ by Theorem 1, the conclusion of Theorem 2 is equivalent to saying that $K \approx L$ if and only if $S^n - K \approx S^n - L$. The “only if” part is a special case of Theorem 1.

On the other hand, since K unknots in S^n, we may assume $K \cap L = \emptyset$.

Again, since $K \cup L$ unknots in S^n, we may assume $K \cup L$ lies in S^{n-1} (the standard $(n-1)$-sphere). The “if” part of the theorem now follows from Lemma 4.3 of [10].

Remark 4. Combining Theorem 2.4 in [5] and the proof of Theorem 2 above, we can state the following result.
Let X, Y be continua in S^n, $n \geq 5$, having the shape of finite complexes in the trivial range, satisfying SLC (definition in [5]) and $\max(\dim X, \dim Y) \leq n - 3$. Then $\text{Sh}(X) = \text{Sh}(Y)$ if and only if $S^n - X \approx S^n - Y$.

Proof of Theorem 3. We have $\tilde{H}^*(X) \approx \tilde{H}^*(K)$, since $\text{Sh}(X) = \text{Sh}(K)$ [15, Theorem 16]. Hence, we can prove that $H_\ast(S^n - X)$ is finitely generated by using Alexander duality and the fact that $H^\ast(K)$ is finitely generated.

Furthermore, the end e is stable and $\pi_1(e) \approx H_1(K) = 0$ (Lemma 4). We have $S^n - X$ is PL-homeomorphic to the interior of a compact PL n-manifold M [17, Theorem 5.9]. Then, we may assume that M is contained in $S^n - X$.

Let $W = S^n - \text{Int} M$. It is clear that $W - X$ is PL-homeomorphic to $\partial W \times [0, 1)$.

Now, it is easy to see that X has a nested sequence $\{W_j\}$ of PL n-manifold neighborhoods such that $W_1 = W$ and the inclusion $W_{j+1} \hookrightarrow W_j$ is a homotopy equivalence for every $j \in \mathbb{N}$. By terminology of [15], we can say that X is associated with the ANR-sequence $X = \{W_j, \iota_{j+1,j}, N\}$. Then, by Theorem 6 and Theorem 5 of [15], $\text{Sh}(X) = \text{Sh}(W)$. Hence $W \approx K$ by Theorem 4 in [15] and 8.6 of [1].

Proof of Corollary 3. Let $f: K \rightarrow \text{Int} W$ (W in the previous theorem) by a map that defines the homotopy equivalence between K and $\text{Int} W$. We may assume that f is a PL-embedding by the following observation. If $2 \dim K + 1 \leq n$, f is homotopic to a PL-embedding in $\text{Int} W$ by PL-approximation and general position theorem. If K is a closed PL-manifold and $\dim K \leq n - 3$, f is homotopic to a PL-embedding in $\text{Int} W$ by Corollary 11.3.4 [21]. Therefore, in either case, f is homotopic to a PL-embedding in $\text{Int} W$, say f'. It is clear that f' is also a homotopy equivalence. That proves the claim.

Let $K_1 = f(K)$. Then $K_1 \hookrightarrow \text{Int} W$ is also a homotopy equivalence.

We can now apply Theorem 2.1 of [18] to conclude that $\text{Int} W$ is PL-homeomorphic to the interior of a regular neighborhood N of K_1 in S^n, fixing K_1 ($\pi_1(\partial W) = 0 = \pi_1(\text{Int} W)$).

Now, it can be shown that the PL n-manifold $\overline{W - N_1}$ is a H-cobordism whose boundary is $\partial W \cup \partial N_1$ with $\pi_1(\partial W) = 0$ and $\pi_1(\partial N_1) = 0$ where N_1 is a regular neighborhood of K_1 in $\text{Int} W$. From H-cobordism theorem, we infer that $W - K_1 \approx \partial W \times [0, 1) \approx W - X$, and the corollary follows.

References

MR 39 #7604.
16. T. B. Rushing, The compacta \(X\) in \(S^n\) for which \(\text{Sh}(X) = \text{Sh}(S^k)\) is equivalent to \(S^n - X \cong S^n - S^k\), Fund. Math. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112

Current address: Department of Mathematics, University of Georgia, Athens, Georgia 30602