Certain continua in $S^{n}$ of the same shape have homeomorphic complements
HTML articles powered by AMS MathViewer
- by Vo Thanh Liem
- Trans. Amer. Math. Soc. 218 (1976), 207-217
- DOI: https://doi.org/10.1090/S0002-9947-1976-0397737-0
- PDF | Request permission
Abstract:
As a consequence of Theorem 1 of this paper, we see that if X and Y are globally 1-alg continua in ${S^n}\;(n \geqslant 5)$ having the shape of the real projective space ${P^k}\;(k \ne 2,2k + 2 \leqslant n)$, then ${S^n} - X \approx {S^n} - Y$. (For ${P^1} = {S^1}$, this establishes the last case of such a result for spheres.) We also show that if X and Y are globally 1-alg continua in ${S^n},n \geqslant 6$, which have the shape of a codimension $\geqslant 3$, closed, $0 < (2m - n + 1)$-connected, PL-manifold ${M^m}$, then ${S^n} - X \approx {S^n} - Y$.References
- Karol Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223β254. MR 229237, DOI 10.4064/fm-62-3-223-254
- William Browder, Structures on $M\times R$, Proc. Cambridge Philos. Soc. 61 (1965), 337β345. MR 175136
- T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), no.Β 3, 181β193. MR 320997, DOI 10.4064/fm-76-3-181-193
- T. A. Chapman, Shapes of finite-dimensional compacta, Fund. Math. 76 (1972), no.Β 3, 261β276. MR 320998, DOI 10.4064/fm-76-3-261-276 D. Coram, R. J. Daverman, and P. F. Duvall, Jr., A small loop condition for embedded compacta, Trans. Amer. Math. Soc. (to appear).
- D. Coram and P. F. Duvall Jr., Neighborhoods of sphere-like continua, General Topology and Appl. 6 (1976), no.Β 2, 191β198. MR 400238, DOI 10.1016/0016-660X(76)90032-5
- Robert J. Daverman, Homotopy classification of complements of locally flat codimension two spheres, Amer. J. Math. 98 (1976), no.Β 2, 367β374. MR 420632, DOI 10.2307/2373890
- Robert J. Daverman, On weakly flat $1$-spheres, Proc. Amer. Math. Soc. 38 (1973), 207β210. MR 310894, DOI 10.1090/S0002-9939-1973-0310894-X
- Paul F. Duvall Jr., Weakly flat spheres, Michigan Math. J. 16 (1969), 117β124. MR 246300
- Ross Geoghegan and R. Richard Summerhill, Concerning the shapes of finite-dimensional compacta, Trans. Amer. Math. Soc. 179 (1973), 281β292. MR 324637, DOI 10.1090/S0002-9947-1973-0324637-1
- V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29β53, 129β152. MR 58204, DOI 10.1112/plms/s3-3.1.29
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- M. C. Irwin, Embeddings of polyhedral manifolds, Ann. of Math. (2) 82 (1965), 1β14. MR 182978, DOI 10.2307/1970560
- Michel A. Kervaire, On higher dimensional knots, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp.Β 105β119. MR 0178475
- Sibe MardeΕ‘iΔ and Jack Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), no.Β 1, 41β59. MR 298634, DOI 10.4064/fm-72-1-41-59
- T. B. Rushing, The compacta $X$ in $S^{n}$ for which $\textrm {Sh}(X)=\textrm {Sh}(S^{k})$ is equivalent to $S^{n}-X\approx S^{n}-S^{k}$, Fund. Math. 97 (1977), no.Β 1, 1β8. MR 461515, DOI 10.4064/fm-97-2-79-94 L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Ph. D. Dissertation, Princeton University, 1965.
- L. C. Siebenmann, On detecting open collars, Trans. Amer. Math. Soc. 142 (1969), 201β227. MR 246301, DOI 10.1090/S0002-9947-1969-0246301-9
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 E. C. Zeeman, Seminar on combinatorial topology, Mimeographed Notes, Inst. Hautes Γtudes Sci., Paris, 1963.
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
- Sibe MardeΕ‘iΔ and Jack Segal, Equivalence of the Borsuk and the ANR-system approach to shapes, Fund. Math. 72 (1971), no.Β 1, 61β68. (errata insert). MR 301694, DOI 10.4064/fm-72-1-61-68
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 218 (1976), 207-217
- MSC: Primary 57A15; Secondary 54C56
- DOI: https://doi.org/10.1090/S0002-9947-1976-0397737-0
- MathSciNet review: 0397737