Some results on orientation preserving involutions
HTML articles powered by AMS MathViewer
- by David E. Gibbs
- Trans. Amer. Math. Soc. 218 (1976), 321-332
- DOI: https://doi.org/10.1090/S0002-9947-1976-0410770-5
- PDF | Request permission
Abstract:
The bordism of orientation preserving differentiable involutions is studied by use of the signature-like invariant ${\text {ab}}: {\mathcal {O}_\ast }({Z_2}) \to {W_0}({Z_2};Z)$. The equivariant Witt ring ${W_0}({Z_2};Z)$ is calculated and is shown to be isomorphic under ab to the effective part of ${\mathcal {O}_4}({Z_2})$. Modulo 2 relations are established between the representation of the involution on ${H^{2k}}({M^{4k}};Z)/{\operatorname {torsion}}$ and ${\chi _0}(F)$ and ${\chi _2}(F)$, where ${\chi _i}(F)$ is the Euler characteristic of those components of the fixed point set with dimensions congruent to i modulo 4. For manifolds of dimension $4k + 2$, it is shown that ${\chi _0}(F) \equiv {\chi _2}(F) \equiv 0\;(\bmod 2)$. Finally the ideal ${E_0}({Z_2};Z)$ consisting of those elements of ${W_0}({Z_2};Z)$ admitting a representative of type II is determined.References
- John P. Alexander, A $W(Z_{2})$ invariant for orientation preserving involutions, Proc. Amer. Math. Soc. 51 (1975), 455–460. MR 377947, DOI 10.1090/S0002-9939-1975-0377947-3
- J. P. Alexander, P. E. Conner, G. C. Hamrick, and J. W. Vick, Witt classes of integral representations of an abelian $p$-group, Bull. Amer. Math. Soc. 80 (1974), 1179–1182. MR 384912, DOI 10.1090/S0002-9904-1974-13665-7
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Pierre E. Conner, Lectures on the action of a finite group, Lecture Notes in Mathematics, No. 73, Springer-Verlag, Berlin-New York, 1968. MR 0258023, DOI 10.1007/BFb0079602
- P. E. Conner and Frank Raymond, A quadratic form on the quotient of a periodic map, Semigroup Forum 7 (1974), no. 1-4, 310–333. MR 391139, DOI 10.1007/BF02315978
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- J. P. Alexander, G. C. Hamrick, and J. W. Vick, Bilinear forms and cyclic group actions, Bull. Amer. Math. Soc. 80 (1974), 730–734. MR 346821, DOI 10.1090/S0002-9904-1974-13576-7
- K. Jänich and E. Ossa, On the signature of an involution, Topology 8 (1969), 27–30. MR 238337, DOI 10.1016/0040-9383(69)90027-5
- G. Lusztig, J. Milnor, and F. P. Peterson, Semi-characteristics and cobordism, Topology 8 (1969), 357–359. MR 246308, DOI 10.1016/0040-9383(69)90021-4
- John Milnor, On simply connected $4$-manifolds, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 122–128. MR 0103472
- John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR 0506372, DOI 10.1007/978-3-642-88330-9
- H. L. Rosenzweig, Bordism of involutions on manifolds, Illinois J. Math. 16 (1972), 1–10. MR 290386, DOI 10.1215/ijm/1256052378
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 218 (1976), 321-332
- MSC: Primary 57D85
- DOI: https://doi.org/10.1090/S0002-9947-1976-0410770-5
- MathSciNet review: 0410770