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ABSTRACT.  In this paper, we shall consider the problem:   let X be a

(reduced) analytic space and A a nowhere dense analytic set in X.  And let R

be a proper equivalence relation on A such that the quotient space A/R is an

analytic space, and R the trivial extension of R to X.    Then, is X/R an

analytic space?  To this, we have three sufficient conditions.  Moreover, using

this result we shall extend Satz 1 of H. Kerner [8].

1. Introduction. Let (X, x0) be an analytic space and R an equivalence

relation on X.  Then the local ringed quotient space (X/R, X0/R) is defined and

the problem, whether (X/R, X0/R) is an analytic space, is studied by H. Cartan,

H. Holmann, B. Kaup and others.

In this paper, we shall consider the problem: let X be a (reduced) analytic

space and A a nowhere dense analytic set in X.  And let R be a proper equiva-

lence relation on A such that the quotient space A/R is an analytic space, and

R the trivial extension of R to X. Then, is X/R an analytic space? To this, we

have

Theorem. X/R is an analytic space, if one of the following three state-

ments is satisfied:

(1) R is finite.

(2) A is contractible in X and the canonical mapping j: A/R —* X/R is

quasi-finite.

(3) A is contractible and retractable in X.

Next, using Theorem, (3), we shall extend Satz 1 of H. Kerner [8] : let Xk

be a connected complex manifold, Ak a contractible and retractable analytic set

in Xk and Rk a proper equivalence relation on Ak such that Ak/Rk is an analy-

tic space and dimfl Rk(a) > 0 for any a E Ak  (k = 1, 2). Then, we have the

following diagrams of analytic spaces:
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Pk
Xk *" XklRk

h

Ak-k—*AklRk

Here pk: Ak —► Ak/Rk, pk: Xk —► Xk/Rk are natural projections, ik: Ak —*■

Xk is the injection and jk: Ak/Rk —► Xk/Rk is the canonical mapping. Let rk:

Xk —*Ak be the holomorphic retraction. Then, we have

.w ***

Theorem.   Suppose that f.m.d. r2 > dim Ax + 2. IfXx/Rx and X2¡R2

are analytically equivalent, then the above two diagrams are analytically equivalent.

H. Kerner has treated the case that rk: Xk —> Ak is a weakly negative vec-

tor bundle and Rk(a) = Ak for any aEAk.

2. Trivial extension of equivalence relations. Let L be the category of

local ringed spaces [6] :  objects in L are local ringed spaces and morphisms in L

are morphisms of local ringed spaces.

Definition 1.  A commutative diagram of morphisms in L:

¿->r

!.. 1-
is called a pushout (and P is called the pushout for r and s), if for any object A

and morphisms u: Y —► A,v: Z —*■ A in L with v o s = u o r, there exists the

unique morphism p: p—*A such that p o b = v and p o a = u.

Let (X, x0)oe a (reduced) analytic space and R an equivalence relation on

X.  Then there exists the local ringed quotient space (X/R, X0/R) and the natural

projection p: X —* X/R is a morphism of local ringed spaces, where X/R is the

quotient topological space of X by R and X0/R, the structure sheaf on X/R, is

defined as follows:  for any open set U C X/R, (X0/R) (U):= { /: U—> C,

/opGr(p-'(£/),.0)}.

Definition 2.  An equivalence relation R on JT is called proper if for. any

compact set K C X, the R-saturated set R(K) (i.e. the union of all equivalence

classes meeting A") is also compact.

This condition is equivalent that X/R is locally compact and the natural

projection p: X —► X/R is proper.

Definition 3.  Let A be a subset of X and R an equivalence relation on

A.  The trivial extension R of R to X, an equivalence relation on X, is defined

by
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~ (/?(*),     foTXEA,
R(x) ~\

({x},    ÎOTxfiA,

where R(x), x G A, denotes the equivalence class by R containing x.

Let (A, A 0) be a nowhere dense analytic set of (X, x0) and R an equiva-

lence relation on A.    Then we have the local ringed quotient spaces (A/R,

A 0/R), (X/R,x0/R).  hetp.A—* A/R, p: X —* X/R be natural projections

and /: A —* X the injection. Then there exists the canonical mapping /: A/R —*

X/R (po / = / o p) and / is a morphism in L .

Lemma 1.   X/R is the pushout for i and p in L-

Proof.   For any object Z and morphisms u: A/R —*Z, v: X —► Z in L

with i; o / = u o p, we define the mapping as follows: for any 3c G X/R, we put

<p(x) := v(x) (x E p-1(jc)). Then this is well defined. In fact p(x) = p(x')

(x, x' E X) implies v(x) = v(x' ). Now </? is continuous with u = <*? o p, and u =

if o / since uop = {pojop and p is surjective.

For any fEzO^-^xEX/R), there exists Je (x0/R)z with v*(f) =

fop.  And we put <pZ(f) := f.  Then <p* holds commutativity and

MM

is unique. Hence X/R is the pushout in  L for 1 and p.   Q.E.D.

Definition 4.  An analytic set A C X is called contractible in X if A is

nowhere discrete, compact and if there exist an analytic space Y and a surjective

proper holomorphe mapping \p: X —*■ Y such that \jj(A) =: yA EY and the re-

striction \¡/1 (X - A) —► ( Y - { yA }) is biholomorphic.

Definition 5.   An analytic set A C X is called retractable if there exists a

holomorphic retraction of X to A (i.e. a surjective holomorphic mapping r:

X-* A with r\A = idA).

Definition 6.  A morphism /: (X, x0) —*(Y, Y 0) in L is called quasi-

finite if for any x EX, x^xKfxQ^f/x)))is a finite dimensional vector space

over C, where Mf,x. is the maximal ideal of yOfixy

Let (A, A 0) be an analytic set in (X, x0) and R a proper equivalence re-

lation on A such that A/R is an analytic space. Using the results by B. Kaup [6]

and the method of H. Kerner [8], we shall show the sufficient conditions under

which X/R is an analytic space.
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Theorem 1. X/R is an analytic space, if one of the following statements

is satisfied:

(1) R is finite (i.e. every equivalence class of A by R is a finite set).

(2) A is contractible in X and the canonical mapping j: A/R —+X/R is

quasi-finite.

(3) A is contractible and retractable in X.

Proof.  (1) From Lemma 1, X/R is the pushout for the injection i: A —►

X and the natural projection p: A —*■ A/R. Hence, by B. Kaup [6, Satz 1.8],

X/R is an analytic space.

(2) If A is contractible in X, A is exceptional in A!" in the sense of B. Kaup

[6]. Hence, by Lemma 1 and B. Kaup [6, Aussage 1.11], X/R is an analytic

space.

(3) R is proper since, for any compact set K C X, R(K) = K U R(K) is

also compact in X.

By the assumption, there exist an analytic space Y, a surjective proper holo-

morphic mapping \¡i: X —► Y and a holomorphic retraction r : X —► A.   Then we

have a surjective morphism 7: X/R —► A/R with 7 o p = p o r. In fact, for any

xEX/R,v/e put

7(x ) := p o r(x)      (xEp-1 (x )).

Then 7: X/R —» A/R is well defined.

X/R

r

—?-+A/R

Now, we claim that (X/R, r0/R ) is locally morph-separable (i.e. for any

x E X/R, there exists an open neighborhood U C X/R such that T(i/. X0/R )

separates points of U). Then (X/R, X0/R ) is an analytic space by H. Cartan

[1, Main Theorem].

Let x be a point of X/R. We may assume that xEj(A/R). Then there

exists an open neighborhood V of x := 7(x) such that T(V, A 0/R) separates

points of V and also there exists an open neighborhood O C Y ofyA such that

F(0, Y0) separates points of O. Since W := \¡/_l(0) C X is an open neighbor-

hood of A, we have p~x(p (W)) = W, hence p (W) is an open neighborhood of

x. Thus, so is i/:= p(W) n 7~X(V) C X/R. We can show that U satisfies the

above statement. Let y, 7be any distinct points in U.  Then there exist two

distinct points y, z in X such that p (y) = y, p(z) = 7. If ip(y) ¥= \j/(z), we

have/e T(0, Y0) with/o $(y)±fo ^(z). And/o yy e r(IV,x0)is constant

on A  Put
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„,~,       \f"4>o(p\W-A)-l(w),   for wEp(W- A),
F(w) := < ,       „    ^

¡f(yA), \forwEp(A).

Then F G r(p(W), X0/R) C T(£/, x 0/R ) and / o \¡j = F o p in W.  Therefore

F(3y ) =£ F(iT). If ^( v) = \KZ)> then v, z G A and p(^) ¥= p(z). Hence we have

g G F(V, A 0/R) with g o p( v) *£ o p(z). Put in V, G: = g o 7; then G G

r(i/, y o//î ) with G (y ) =£ G(z), since r: X—*A isa holomorphic retraction.

Thus (X/R, X0/R) is locally morph-separable.   Q.E.D.

Remark 1.   We can easily find the examples such that X/R is not an

analytic space, in the case that R is not finite in (1), or A is not contractible in

(2), (3) respectively.

Corollary 1.  Let (X, x 0), (A, . 0) and R be as in Theorem 1,(1) or

(3). Then A/R is embedded in X/R. In particular, in the case of (3), A/R is

contractible and retractable in X/R.

Proof.  The canonical mapping/: A/R —*j(A/R) is a holomorphic homeo-

morphism since / is proper. We assert that for any "aE A/R, /*: (xO/R)¡(¡ ) —*"

(A 0/R)~ is surjective.

(1) For any / G (A 0/R)„ (aE A/R), we have p* (/) G AOa(aEp~l (a)).

Then there exists g E x0a with i*(g) = p*(f). Since p is finite proper, we have

G E (x 0/R )/(~} with P*(G) = g. Then it follows that /* (G) = f.

(3) Since r^ / = id^/R, surjectiveness of/* is evident and in particular 7
a

is a holomorphic retraction. Therefore A/R is retractable and contractible in

X/R.  Q.E.D.

3. Applications. We now consider the following problem:  Let (X, x0)

and (M, M0) be analytic spaces, .4 a nowhere dense analytic set in X and ft:

A —* M i surjective proper holomorphic mapping. Then, does an analytic space

Y exist with the following property (P)?

(P) There exist a surjective proper holomorphic mapping ft : X —+ Y and

an injection j: M—* Y such that the restriction ft \A =j o ft and ft I (X - A) —*
*N* *N* *S*

( Y - A) (A:=h (A)) is biholomorphic.

Definition 7. We say that a reduced analytic space X is maximal if, for

any open set V C X and a nowhere dense analytic set S C V, every continuous

function on V which is holomorphic on V - S is actually holomorphic on V.

Remark 2. If an analytic space (X, x0) is maximal, xO is the maximal

reduced complex structure on X.

Let X, A and R be as in Theorem 1 (1) or (2) or (3). If X is maximal, so

is X/R.
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Let Rn be the equivalence relation on A defined by h: A —► M (i.e. for

any u, v E A, u Rh v means h(u) = h(v)). Then Rh is proper and, if M is maxi-

mal we can show that A/Rh,M are isomorphic. Thus from Theorem 1 and

Corollary 1, we have

Theorem 2. 7/(1) or (3) in Theorem 1 is satisfied for X, A, Rh and M is

maximal, there exists an analytic space Y with the property (P).

Corollary 2.  7ef X, A, M and Rh be as in Theorem 2. Suppose that

X is maximal.   Then any maximal analytic space Y' with the property (P) is bi-

holomorphically equivalent to X/Rn.

Proof.  Let p': X —*■ Y' be a surjective proper holomorphic mapping and

/': A/Rh —► Y' an injection such that the restriction p'|i4 = j' o p andp |(A" - A)

—*(Y'-p'(A)) is biholomorphic. Then, from Lemma 1, we have the unique

holomorphic mapping \p: X/Rh —* Y' with p ' = \¡/ o p, j' = \p o /.

Y'

Since the restriction \¡/\ (X/Rh - p(A)) -+ (Y' - p'(A)) and 4/\j(A/Rh) ->

j'(A/Rh) are biholomorphic, $ is bijective. Moreover, l^-1 is continuous since

p' is proper. Hence i// is a holomorphic homeomorphism. By assumption, Y' is

maximal, thus i|/ is biholomorphic.  Q.E.D.

Now, using Theorem 1, (3), we shall extend Satz 1 of H. Kerner [8]. Let Xk

be a connected complex manifold and Ak a contractible and retractable analytic set

in Xk. Let Rk be an equivalence relation on Ak such that Ak/Rk is an analytic

space and dima Rk(a) > 0 for any a E Ak (k = 1, 2). If Rk is proper, Xk/Rk is

an analytic space and the natural projection pk: Xk —■*■ Xk/Rk is proper holo-

morphic. Letr^.Yfc—*Ak be the holomorphic retraction. Then we use the

following result.

Lemma 2 (H. Holmann [5]). Let X be a complex manifold and A an

analytic set in X. Suppose that r: X —* A is a holomorphic retraction.  Then A

is a closed complex submanifold of X and, for any a EA, there exists an open

neighborhood U C X such that the restriction r\U is a holomorphic projection

(i.e. there exist two complex manifolds Mx, M2 and a biholomorphic mapping

T: U—*MX x M2 such that pr = Toro T'1, where pr: Mx xM2~+Mx x
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A/2, pr(*,, x2) = (jc,, x2) for any (xt, x2)EMt x M2, jc" is a fixed point).

If ip is a holomorphic mapping of an analytic space X into an analytic

space Y, we put f.m.d. y:= min^g^- dimx\p~'(ip(x)). Then using Lemma 2 and

the assumption d\maRk(a) > 0, we can prove the next lemma in almost like

manner as in [8].

Lemma 3.   Suppose that f.m.d. rk > 2.  Then Ak := pk(Ak) is the set of

all singular points of Xk/Rk.

Theorem 3. Suppose that f.m.d. r2 > dim A, +2. IfXl/Rl and X2/R2

are analytically equivalent, the following diagrams (k = 1,2) are analytically

equivalent.

Proof.   We first show that

(*) f.m.d. r, > dim A2 + 2

in some open neighborhood of A,.

Pk ~
Xk * XklRk

I*Pk
k-*AklRk

By assumption, any point of Ak (k = 1.2) has an open neighborhood with

the property stated in Lemma 2.  Let Ok be the union of all such open neigh-

borhoods. Then

dim 02 - dim A2 > f.m.d. r2 > dim Ax + 2.

Since dim 0, = dim 02, it follows that

f.m.d. (r, |Oj) = dim 0, - dim Ax > dim A2 + 2.

Hence, by Lemma 3,Ak := pk(Ak)(k = 1, 2) is the set of all singular

points of Xk/Rk. Let ¡¡/: XJRX —* X2/R2 be the biholomorphic mapping.

Then ty(Ax) = A2 and there exists an open neighborhood Vk C Xk/Rk of Ak

mthV;:=p-k\Vk)COk.

We now assert that there exists a holomorphic mapping ^" : Vx —► U2

such that \¡/ o p, = p2 o 0 *. We put

V ?* *,((/, -AX)-*(V2-A2),

Pk ■= Pk\(Uk-Ak)-*(Vk-Ak)      (k=l, 2).
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These mappings are biholomorphic. And we put, on Ux - Ax, T := r2 o

(p2)~l of o px. Then r: (Ux - AX)—*A2 is also holomorphic. Since

f jn.d. t > dimAx + 2 on Ux - A x, we have the holomorphic mapping 7: Ux

-*A2 such that ?|(Ux - Ax) = t [9, Satz 2]. Define the mapping \p" : Ux

—*■ U2 as follows:

roo*
(Pi)"1 ° *" ° Pi»,   for x G Í7, - ^„

I/, o  T(X), forx EAX,

where /2: ^42 —*■ i/2 is the injection. Remark that t = r2 o \¡/~ on Ux.

U,

Pi
*'

■+U.w

p2

¿7. r"»
Then we can show that 0" : £/| —* U2 is continuous. To show this, it

suffices to say that ii" is continuous at any a EAX, and hence, for any sequence

{aw} C Ux - Ax which converges to a,{\¡/"(an)} converges and limn_>00 ^"(an)

{ ty~(an)} ={p2~l(^ o px(an))} CU2- A2 has cluster points in U2 since

p2 is proper, and they must be contained in ^42. Further, the cluster points are

unique and coincide with #~(fl). In fact, if a is a cluster point of { #~(an)},

we have a subsequence {a'n} of {an} with lim,,.^ p^1 o \¡/ o p^«) = «• Then

a = r2(a) = r2/lim pj'o^c Pi«))

= lim r2 o pj1 o ^ o p^«;) = lim r(a')
n-+«o

= lim ?«) = 7(a) = r (a).

B-K»

n-K»

Hence lim,,.^ #~(a„) = #~(a). Therefore #~ is continuous. Since Uk is a

complex manifold (fc = 1,2) and ^ * | (Ux - A x ) is holomorphic on Ux - A,,

ty" is holomorphic on £IJ\ Further, ^ o pt ■> p2 o ty* on £/J".

To complete the proof of the theorem, it suffices to show that \¡/~ is bi-

jective and its inverse is holomorphic. By (*), we also have the holomorphic map-

ping ($~xy :U2-+U¡ such that ifr1 o p2 = px o O-1)* on U2. Then it

follows that
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(ip-1)* of =id   oní/p

\Jj~ o ty-lf = id   ontÇ.

Hence ip A : f/j* —► V2 is biholomorphic and, in particular, ^~ (,4 j ) = A2. There-

fore Ak, Xk and Ak/Rk (k = 1,2) are analytically equivalent respectively, and

the two diagrams are analytically equivalent.   Q.E.D.

Remark 3.  H. Kerner [8] has treated the case that rk: Xk—* Ak

(k = 1, 2) is a weakly negative vector bundle and Rk(a) = Ak for any a G Ak.
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