Symmetrizable and related spaces
HTML articles powered by AMS MathViewer
- by Peter W. Harley and R. M. Stephenson
- Trans. Amer. Math. Soc. 219 (1976), 89-111
- DOI: https://doi.org/10.1090/S0002-9947-1976-0418048-0
- PDF | Request permission
Abstract:
A study is made of a family of spaces which contains the symmetrizable spaces as well as many of the well-known examples of perfectly normal spaces.References
- Richard Arens, Note on convergence in topology, Math. Mag. 23 (1950), 229–234. MR 37500, DOI 10.2307/3028991
- A. V. Arhangel′skiĭ, Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950, DOI 10.1070/RM1966v021n04ABEH004169 P. Aleksandrov and P. Urysohn, ’On compact topological spaces,’ in P. S. Urysohn, Works in topology and other fields of mathematics. Vol. 2, GITTL, Moscow, 1951, pp. 848-963. MR 14, 122. T. K. Boehme, Linear s-spaces, Symposium on Convergence Structures, University of Oklahoma, 1965.
- Dennis A. Bonnett, A symmetrizable space that is not perfect, Proc. Amer. Math. Soc. 34 (1972), 560–564. MR 295275, DOI 10.1090/S0002-9939-1972-0295275-9
- P. W. Harley III and G. D. Faulkner, Metrization of symmetric spaces, Canadian J. Math. 27 (1975), no. 5, 986–990. MR 413055, DOI 10.4153/CJM-1975-102-x
- V. V. Filippov, Perfectly normal bicompacta, Dokl. Akad. Nauk SSSR 189 (1969), 736–739 (Russian). MR 0256350
- S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115. MR 180954, DOI 10.4064/fm-57-1-107-115
- S. P. Franklin, Spaces in which sequences suffice. II, Fund. Math. 61 (1967), 51–56. MR 222832, DOI 10.4064/fm-61-1-51-56
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2 J. W. Goldston, Topologies determined by classes of nets, Doctoral Dissertation, University of North Carolina, Chapel Hill, N. C., 1975.
- John Wm. Green, Moore-closed spaces, completeness and centered bases, General Topology and Appl. 4 (1974), 297–313. MR 365502, DOI 10.1016/0016-660X(74)90009-9 R. W. Heath, Semi-metric spaces and related spaces, Proc. Arizona State University Topology Conference, 1967.
- Robert W. Heath and Ernest A. Michael, A property of the Sorgenfrey line, Compositio Math. 23 (1971), 185–188. MR 287515
- F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. 43 (1937), no. 10, 671–677. MR 1563615, DOI 10.1090/S0002-9904-1937-06622-5
- I. Juhász, K. Kunen, and M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canadian J. Math. 28 (1976), no. 5, 998–1005. MR 428245, DOI 10.4153/CJM-1976-098-8
- Ernest Michael, Local compactness and Cartesian products of quotient maps and $k$-spaces, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 2, 281–286 vii (1969) (English, with French summary). MR 244943, DOI 10.5802/aif.300
- S. Nedev, Symmetrizable spaces and final compactness, Dokl. Akad. Nauk SSSR 175 (1967), 532–534 (Russian). MR 0216460
- V. Niemytzki, Über die Axiome des metrischen Raumes, Math. Ann. 104 (1931), no. 1, 666–671 (German). MR 1512692, DOI 10.1007/BF01457963 J. Novák, Sur les espaces (L) et sur les produits cartésiens (L), Publ. Fac. Sci. Univ. Massaryk 1939, no. 273. MR 1, 221.
- A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), no. 3, 505–516. MR 438292, DOI 10.1112/jlms/s2-14.3.505
- R. M. Stephenson Jr., Discrete subsets of perfectly normal spaces, Proc. Amer. Math. Soc. 34 (1972), 605–608. MR 296885, DOI 10.1090/S0002-9939-1972-0296885-5 F. D. Tall, An alternative to the continuum hypothesis and its uses in general topology (to appear).
- J. E. Vaughan, Classroom Notes: Lexicographic Products and Perfectly Normal Spaces, Amer. Math. Monthly 78 (1971), no. 5, 533–536. MR 1536336, DOI 10.2307/2317766 W. A. R. Weiss, Countably compact, perfectly normal spaces may or may not be compact, Notices Amer. Math. Soc. 22 (1975), A-334.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 219 (1976), 89-111
- MSC: Primary 54D55; Secondary 54E25
- DOI: https://doi.org/10.1090/S0002-9947-1976-0418048-0
- MathSciNet review: 0418048