A Hausdorff measure inequality
HTML articles powered by AMS MathViewer
- by Lawrence R. Ernst and Gerald Freilich
- Trans. Amer. Math. Soc. 219 (1976), 361-368
- DOI: https://doi.org/10.1090/S0002-9947-1976-0419739-8
- PDF | Request permission
Abstract:
We prove that the Hausdorff $(m + k)$-measure of a product set is no less than the product of the Hausdorff m-measure of the (measurable) first component set in ${{\mathbf {R}}^m}$ and the (finite) Hausdorff k-measure of the second component in ${{\mathbf {R}}^n}$.References
- A. S. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets, J. London Math. Soc. 20 (1945), 110β120. MR 16448, DOI 10.1112/jlms/s1-20.2.110
- Lawrence R. Ernst, A proof that ${\cal H}^{2}$ and ${\cal T}^{2}$ are distinct measures, Trans. Amer. Math. Soc. 191 (1974), 363β372. MR 361007, DOI 10.1090/S0002-9947-1974-0361007-5
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Gerald Freilich, On the measure of Cartesian product sets, Trans. Amer. Math. Soc. 69 (1950), 232β275. MR 37893, DOI 10.1090/S0002-9947-1950-0037893-9
- Edward F. Moore, Convexly generated $k$-dimensional measures, Proc. Amer. Math. Soc. 2 (1951), 597β606. MR 43175, DOI 10.1090/S0002-9939-1951-0043175-8
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 219 (1976), 361-368
- MSC: Primary 28A75
- DOI: https://doi.org/10.1090/S0002-9947-1976-0419739-8
- MathSciNet review: 0419739