The multiplicity function of a local ring
HTML articles powered by AMS MathViewer
- by James Hornell
- Trans. Amer. Math. Soc. 220 (1976), 321-341
- DOI: https://doi.org/10.1090/S0002-9947-1976-0409491-4
- PDF | Request permission
Abstract:
Let A be a local ring with maximal ideal m. Let $f \in A$, and define ${\mu _A}(f)$ to be the multiplicity of the A-module $A/Af$ with respect to m. Under suitable conditions ${\mu _A}(fg) = {\mu _A}(f) + {\mu _A}(g)$. The relationship of ${\mu _A}$ to reduction of A, normalization of A and a quadratic transform of A is studied. It is then shown that there are positive integers ${n_1}, \ldots ,{n_s}$ and rank one discrete valuations ${v_1}, \ldots ,{v_s}$ of A centered at m such that ${\mu _A}(f) = {n_1}{v_1}(f) + \cdots + {n_s}{v_s}(f)$ for all regular elements f of A.References
- James Hornell, Intersection theory in an equicharacteristic regular local ring and the relative intersection theory, Proc. Amer. Math. Soc. 36 (1972), 8–12. MR 309936, DOI 10.1090/S0002-9939-1972-0309936-6
- James Hornell, Divisorial complete intersections, Pacific J. Math. 45 (1973), 217–227. MR 318119
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge University Press, London, 1968. MR 0231816
- D. G. Northcott, The neighbourhoods of a local ring, J. London Math. Soc. 30 (1955), 360–375. MR 71110, DOI 10.1112/jlms/s1-30.3.360 J.-P. Serre, Algèbre locale. Multiplicités, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin and New York, 1965. MR 34 #1352.
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 220 (1976), 321-341
- MSC: Primary 14M10; Secondary 13H15
- DOI: https://doi.org/10.1090/S0002-9947-1976-0409491-4
- MathSciNet review: 0409491