Solution of Hallam’s problem on the terminal comparison principle for ordinary differential inequalities
HTML articles powered by AMS MathViewer
- by Giovanni Vidossich
- Trans. Amer. Math. Soc. 220 (1976), 115-132
- DOI: https://doi.org/10.1090/S0002-9947-1976-0412524-2
- PDF | Request permission
Abstract:
We solve affirmatively the open problem raised by Hallam [3] and we apply this result to classical differential inequalities as well as to get existence and uniqueness theorems for the terminal value problem for ordinary differential equations.References
- Fred Brauer, Global behavior of solutions of ordinary differential equations, J. Math. Anal. Appl. 2 (1961), 145–158. MR 130423, DOI 10.1016/0022-247X(61)90051-8
- Federico Cafiero, Su un problema ai limiti relativo all’equazione $y’=f(x,y,\lambda )$, Giorn. Mat. Battaglini (4) 77 (1947), 145–163 (Italian). MR 26739
- Thomas G. Hallam, A comparison principle for terminal value problems in ordinary differential equations, Trans. Amer. Math. Soc. 169 (1972), 49–57. MR 306611, DOI 10.1090/S0002-9947-1972-0306611-3
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- G. Ladas and V. Lakshmikantham, Global existence and asymptotic equilibrium in Banach spaces, J. Indian Math. Soc. (N.S.) 36 (1972), 33–40. MR 318622 V. Lakshmikantham and S. Leela, Differential and integral inequalities. Vol. I, Academic Press, New York, 1969.
- Ja. D. Mamedov, One-sided estimates in the conditions for existence and uniqueness of solutions of the limit Cauchy problem in a Banach space, Sibirsk. Mat. Ž. 6 (1965), 1190–1196 (Russian). MR 0190496
- Giovanni Vidossich, On Peano phenomenon, Boll. Un. Mat. Ital. (4) 3 (1970), 33–42 (English, with Italian summary). MR 0271793 —, Existence, comparison and asymptotic behavior of solutions of ordinary differential equations in finite and infinite dimensional Banach space, Notas de Matemática, no. 24, Universidade de Brasilia, 1972.
- Giovanni Vidossich, Two remarks on global solutions of ordinary differential equations in the real line, Proc. Amer. Math. Soc. 55 (1976), no. 1, 111–115. MR 470291, DOI 10.1090/S0002-9939-1976-0470291-6
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 220 (1976), 115-132
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9947-1976-0412524-2
- MathSciNet review: 0412524