Favardβs solution is the limit of $W^{k,p}$-splines
HTML articles powered by AMS MathViewer
- by C. K. Chui, P. W. Smith and J. D. Ward
- Trans. Amer. Math. Soc. 220 (1976), 299-305
- DOI: https://doi.org/10.1090/S0002-9947-1976-0422954-0
- PDF | Request permission
Abstract:
The purpose of this paper is to affirm a conjecture of C. de Boor, namely: The ${W^{k,p}}$-splines converge in ${W^{k,r}}[a,b]$ for all $r,1 \leqslant r < \infty$, to the Favard solution as p tends to infinity.References
- Charles K. Chui and Philip W. Smith, On $H^{m,\infty }$-splines, SIAM J. Numer. Anal. 11 (1974), 554β558. MR 375733, DOI 10.1137/0711047
- Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR 0157156
- Carl de Boor, On βbestβ interpolation, J. Approximation Theory 16 (1976), no.Β 1, 28β42. MR 397236, DOI 10.1016/0021-9045(76)90093-9
- J. Favard, Sur lβinterpolation, J. Math. Pures Appl. (9) 19 (1940), 281β306 (French). MR 5187
- S. D. Fisher and J. W. Jerome, The existence, characterization and essential uniqueness of solutions of $L^{\infty }$ extremal problems, Trans. Amer. Math. Soc. 187 (1974), 391β404. MR 364983, DOI 10.1090/S0002-9947-1974-0364983-X
- Michael Golomb, ${\scr H}^{m,p}$-extensions by ${\scr H}^{m,p}$-splines, J. Approximation Theory 5 (1972), 238β275. MR 336161, DOI 10.1016/0021-9045(72)90017-2
- Richard B. Holmes, A course on optimization and best approximation, Lecture Notes in Mathematics, Vol. 257, Springer-Verlag, Berlin-New York, 1972. MR 0420367
- J. W. Jerome and L. L. Schumaker, Characterizations of functions with higher order derivatives in ${\scr L}_{p}$, Trans. Amer. Math. Soc. 143 (1969), 363β371. MR 264001, DOI 10.1090/S0002-9947-1969-0264001-6
- Philip W. Smith, $H^{r,}\,^{\infty }(R)$- and $W^{r,\infty }(R)$-splines, Trans. Amer. Math. Soc. 192 (1974), 275β284. MR 367538, DOI 10.1090/S0002-9947-1974-0367538-6
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 220 (1976), 299-305
- MSC: Primary 41A15
- DOI: https://doi.org/10.1090/S0002-9947-1976-0422954-0
- MathSciNet review: 0422954