Topological measure theory for double centralizer algebras
HTML articles powered by AMS MathViewer
- by Robert A. Fontenot
- Trans. Amer. Math. Soc. 220 (1976), 167-184
- DOI: https://doi.org/10.1090/S0002-9947-1976-0454649-1
- PDF | Request permission
Abstract:
The classes of tight, $\tau$-additive, and $\sigma$-additive linear functionals on the double centralizer algebra of a ${C^\ast }$-algebra A are defined. The algebra A is called measure compact if all three classes coincide. Several theorems relating the existence of certain types of approximate identities in A to measure compactness of A are proved. Next, permanence properties of measure compactness are studied. For example, the ${C^\ast }$-algebra tensor product of two measure compact ${C^\ast }$-algebras is measure compact. Next, the question of weak-star metrizability of the positive cone in the space of tight measures is considered. In the last part of the paper, another topology is defined and is used to study the relationship of measure compactness of A and the property that the strict topology is the Mackey topology in the pairing of $M(A)$ with the tight functionals on $M(A)$. Also, in the last section of the paper is an extension of a result of Glickberg about finitely additive measures on pseudocompact topological spaces.References
- Charles A. Akemann, Interpolation in $W^*$-algebras, Duke Math. J. 35 (1968), 525–533. MR 229048
- R. Creighton Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95–104. MR 105611
- Robert C. Busby, Double centralizers and extensions of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79–99. MR 225175, DOI 10.1090/S0002-9947-1968-0225175-5
- John B. Conway, The strict topology and compactness in the space of measures. II, Trans. Amer. Math. Soc. 126 (1967), 474–486. MR 206685, DOI 10.1090/S0002-9947-1967-0206685-2
- John Dauns and Karl Heinrich Hofmann, Representation of rings by sections, Memoirs of the American Mathematical Society, No. 83, American Mathematical Society, Providence, R.I., 1968. MR 0247487 J. Dixmier, Les ${C^\ast }$-algèbres et leur représentations, 2ième éd., Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1969. MR 39 #7442.
- J. Dixmier, Ideal center of a $C^{\ast }$-algebra, Duke Math. J. 35 (1968), 375–382. MR 230138
- James Dugundji, Topology, Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978. Reprinting of the 1966 original. MR 0478089
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- D. H. Fremlin, D. J. H. Garling, and R. G. Haydon, Bounded measures on topological spaces, Proc. London Math. Soc. (3) 25 (1972), 115–136. MR 344405, DOI 10.1112/plms/s3-25.1.115
- Irving Glicksberg, The representation of functionals by integrals, Duke Math. J. 19 (1952), 253–261. MR 50168
- Edwin Hewitt, The ranges of certain convolution operators, Math. Scand. 15 (1964), 147–155. MR 187016, DOI 10.7146/math.scand.a-10738
- R. B. Kirk, Locally compact, $B$-compact spaces, Nederl. Akad. Wetensch. Proc. Ser. A 72=Indag. Math. 31 (1969), 333–344. MR 0264609
- R. B. Kirk, Measures in topological spaces and $B$-compactness, Nederl. Akad. Wetensch. Proc. Ser. A 72=Indag. Math. 31 (1969), 172–183. MR 0246104
- J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. (3) 17 (1967), 139–156. MR 204602, DOI 10.1112/plms/s3-17.1.139
- W. Moran, The additivity of measures on completely regular spaces, J. London Math. Soc. 43 (1968), 633–639. MR 228645, DOI 10.1112/jlms/s1-43.1.633 —, Measures and mappings on topological spaces, Proc. London Math. Soc. 19 (1969), 493-508.
- W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. (3) 20 (1970), 507–524. MR 437706, DOI 10.1112/plms/s3-20.3.507
- Steven E. Mosiman and Robert F. Wheeler, The strict topology in a completely regular setting: relations to topological measure theory, Canadian J. Math. 24 (1972), 873–890. MR 328567, DOI 10.4153/CJM-1972-087-2
- G. A. Reid, A generalisation of $W^{\ast }$-algebras, Pacific J. Math. 15 (1965), 1019–1026. MR 196514 A. P. Robertson and W. J. Robertson, Topological spaces, Cambridge Univ. Press, New York, 1964. MR 28 #5318. S. Sakai, ${C^\ast }$-algebras and ${W^\ast }$-algebras, Springer-Verlag, New York, 1970.
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
- F. Dennis Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311–336. MR 295065, DOI 10.1090/S0002-9947-1972-0295065-1
- F. Dennis Sentilles and Donald Curtis Taylor, Factorization in Banach algebras and the general strict topology, Trans. Amer. Math. Soc. 142 (1969), 141–152. MR 247437, DOI 10.1090/S0002-9947-1969-0247437-9
- Donald Curtis Taylor, The strict topology for double centralizer algebras, Trans. Amer. Math. Soc. 150 (1970), 633–643. MR 290117, DOI 10.1090/S0002-9947-1970-0290117-2
- Donald Curtis Taylor, A general Phillips theorem for $C^{^{\ast } }$-algebras and some applications, Pacific J. Math. 40 (1972), 477–488. MR 308799
- V. S. Varadarajan, Measures on topological spaces, Mat. Sb. (N.S.) 55 (97) (1961), 35–100 (Russian). MR 0148838
- Ju-kwei Wang, Multipliers of commutative Banach algebras, Pacific J. Math. 11 (1961), 1131–1149. MR 138014
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition, revue et augmentée. MR 0352996
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 220 (1976), 167-184
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9947-1976-0454649-1
- MathSciNet review: 0454649