Weakly normal filters and irregular ultrafilters
HTML articles powered by AMS MathViewer
- by A. Kanamori
- Trans. Amer. Math. Soc. 220 (1976), 393-399
- DOI: https://doi.org/10.1090/S0002-9947-1976-0480041-X
- PDF | Request permission
Abstract:
For a filter over a regular cardinal, least functions and the consequent notion of weak normality are described. The following two results, which make a basic connection between the existence of least functions and irregularity of ultrafilters, are then proved: Let U be a uniform ultrafilter over a regular cardinal $\kappa$. (a) If $\kappa = {\lambda ^ + }$, then U is not $(\lambda ,{\lambda ^ + })$-regular iff U has a least function f such that $\{ \xi < {\lambda ^ + }|{\text {cf}}(f(\xi )) = \lambda \} \in U$. (b) If $\omega \leqslant \mu < \kappa$ and U is not $(\omega ,\mu )$-regular, then U has a least function.References
- Miroslav Benda and Jussi Ketonen, Regularity of ultrafilters, Israel J. Math. 17 (1974), 231–240. MR 396264, DOI 10.1007/BF02756872 C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973. R. Jensen and B. Koppelberg, A note on ultrafilters; R. Jensen, Addendum to ’A note on ultrafilters’ (both unpublished). A. Kanamori, Ultrafilters over uncountable cardinals, Doctoral Dissertation, Univ. of Cambridge, 1975. —, A characterization of nonregular ultrafilters, Notices Amer. Math. Soc. 21 (1974), A-381. Abstract #74T-E45.
- Jussi Ketonen, Strong compactness and other cardinal sins, Ann. Math. Logic 5 (1972/73), 47–76. MR 469768, DOI 10.1016/0003-4843(72)90018-6
- Kenneth Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179–227. MR 277346, DOI 10.1016/0003-4843(70)90013-6
- Karel Prikry, On descendingly complete ultrafilters, Cambridge Summer School in Mathematical Logic (Cambridge, 1971) Lecture Notes in Math., Vol. 337, Springer, Berlin, 1973, pp. 459–488. MR 0347613
- Robert M. Solovay, Real-valued measurable cardinals, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428. MR 0290961
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 220 (1976), 393-399
- MSC: Primary 04A20; Secondary 02K35
- DOI: https://doi.org/10.1090/S0002-9947-1976-0480041-X
- MathSciNet review: 0480041