The regularity of the locally integrable and continuous solutions of nonlinear functional equations
HTML articles powered by AMS MathViewer
- by Halina Światak
- Trans. Amer. Math. Soc. 221 (1976), 97-118
- DOI: https://doi.org/10.1090/S0002-9947-1976-0430578-4
- PDF | Request permission
Abstract:
The purpose of this paper is to show a general method which allows one to find all the continuous (and sometimes also all the locally integrable) solutions of functional equations by considering solutions of class ${C^m}$. One can do it if one is assured that all the continuous (or all the locally integrable) solutions of a given equation are functions of class ${C^m}$ or ${C^\infty }$. Such a property is characteristic for the solutions $f:{R^n} \to R$ of the equations \begin{equation}\tag {$\ast $} \sum \limits _{i = 1}^k {{a_i}(x,t)f({\phi _i}(x,t)) = F(x,f({\lambda _1}(x)), \ldots ,f({\lambda _s}(x))) + b(x,t),} \end{equation} where $x \in {R^n},t \in {R^r},n \geqslant 1,r \geqslant 1$ and where the functions ${\phi _i}:{R^{n + r}} \to {R^n},{\lambda _j}:{R^n} \to {R^n},{a_i}:{R^{n + r}} \to R,b:{R^{n + r}} \to R,F:{R^{n + s}} \to R$ satisfy some regularity assumptions and the assumptions which guarantee that an equation obtained by differentiating $(\ast )$ and fixing t is of constant strength, hypoelliptic at a point ${x_0}$. A general theorem, concerning the regularity of the continuous and locally integrable solutions f of $(\ast )$, is formulated and proved by the reduction to the corresponding problem for the distributional solutions of linear partial differential equations.References
- J. Aczél, Lectures on functional equations and their applications, Mathematics in Science and Engineering, Vol. 19, Academic Press, New York-London, 1966. Translated by Scripta Technica, Inc. Supplemented by the author. Edited by Hansjorg Oser. MR 0208210
- J. Aczél, H. Haruki, M. A. McKiernan, and G. N. Sakovič, General and regular solutions of functional equations characterizing harmonic polynomials, Aequationes Math. 1 (1968), 37–53. MR 279471, DOI 10.1007/BF01817556
- John A. Baker, An analogue of the wave equation and certain related functional equations, Canad. Math. Bull. 12 (1969), 837–846. MR 254455, DOI 10.4153/CMB-1969-109-6
- Gustave Choquet and Jacques Deny, Sur quelques propriétés de moyenne caractéristiques des fonctions harmoniques et polyharmoniques, Bull. Soc. Math. France 72 (1944), 118–140 (French). MR 13496, DOI 10.24033/bsmf.1357
- I. Fenyö, Über eine Lösungsmethode gewisser Funktionalgleichungen, Acta Math. Acad. Sci. Hungar. 7 (1956), 383–396 (German, with Russian summary). MR 86261, DOI 10.1007/BF02020533
- Stefan Fenyö, Über eine Funktionalgleichung, Math. Nachr. 31 (1966), 103–109 (German). MR 196319, DOI 10.1002/mana.19660310109
- Stefan Fenyö, Bemerkung zur Funktionalgleichung $f(x+y)+f(x-y)+af(x)=2g(x)h(y)$, Glasnik Mat. Ser. III 1(21) (1966), 69–73 (German, with Serbo-Croatian summary). MR 211113
- Leopold Flatto, Functions with a mean value property, J. Math. Mech. 10 (1961), 11–18. MR 0136751
- Leopold Flatto, Functions with a mean value property. II, Amer. J. Math. 85 (1963), 248–270. MR 158087, DOI 10.2307/2373214
- Leopold Flatto, Partial differential equations and the difference equations, Proc. Amer. Math. Soc. 16 (1965), 858–863. MR 181847, DOI 10.1090/S0002-9939-1965-0181847-5
- Leopold Flatto, On polynomials characterized by a certain mean value property, Proc. Amer. Math. Soc. 17 (1966), 598–601. MR 196022, DOI 10.1090/S0002-9939-1966-0196022-9
- Avner Friedman and Walter Littman, Functions satsifying the mean value property, Trans. Amer. Math. Soc. 102 (1962), 167–180. MR 151628, DOI 10.1090/S0002-9947-1962-0151628-9
- Adriano M. Garsia, A note on the mean value property, Trans. Amer. Math. Soc. 102 (1962), 181–186. MR 151629, DOI 10.1090/S0002-9947-1962-0151629-0
- A. M. Garsia and E. Rodemich, On functions satisfying the mean value property with respect to a product measure, Proc. Amer. Math. Soc. 17 (1966), 592–594. MR 194583, DOI 10.1090/S0002-9939-1966-0194583-7 L. Hörmander, Linear partial differential operators, Die Grundlehren der Math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #4221.
- Bohdan Lawruk and Halina Światak, On functions satisfying a generalized mean value equation, Aequationes Math. 11 (1974), 1–10. MR 344721, DOI 10.1007/BF01837728
- M. A. McKiernan, Boundedness on a set of positive measure and the mean value property characterizes polynomials on a space $V^{n}$, Aequationes Math. 4 (1970), 31–36. MR 291671, DOI 10.1007/BF01817742
- Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X, Hermann, Paris, 1966 (French). Nouvelle édition, entiérement corrigée, refondue et augmentée. MR 0209834
- Halina Światak, On the regularity of the distributional and continuous solutions of the functional equations \[ \sum _{i=1}^{k}a_{l}(x,t)f(x+\varphi _{l}(t))= b(x,t)\], Aequationes Math. 1 (1968), 6–19. MR 279474, DOI 10.1007/BF01817554 —, On the regularity of the solutions of a class of functional equations, Notices Amer. Math. Soc. 16 (1969), 512. Abstract #664-41.
- Halina Światak, On the regularity of the locally integrable solutions of the functional equations $\sum ^{k}_{i=1}a_{i}(x,$ $t)f(x+\varphi _{i}(t))=b(x,$ $t)$, Aequationes Math. 4 (1970), 291–296. MR 407480, DOI 10.1007/BF01844158
- Halina Światak, Criteria for the regularity of continuous and locally integrable solutions of a class of linear functional equations, Aequationes Math. 6 (1971), 170–187. MR 291672, DOI 10.1007/BF01819749
- H. Światak, A certain regularity problems for solutions of functional equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 209–212 (English, with Russian summary). MR 298283
- Halina Światak, On the regularity of the locally integrable solutions of the functional equations $\sum ^{k}_{i=1}a_{i}(x,$ $t)f(x+\varphi _{i}(t))=b(x,$ $t)$, Aequationes Math. 4 (1970), 291–296. MR 407480, DOI 10.1007/BF01844158 —, On generalized mean value equations, Aequationes Math. 7 (1972), Reports of Meetings, 262-263. —, Regularity problems for the solutions of functional differential equations, Aequationes Math. 8 (1972), Reports of Meetings, 146-147.
- François Trèves, Linear partial differential equations with constant coefficients: Existence, approximation and regularity of solutions, Mathematics and its Applications, Vol. 6, Gordon and Breach Science Publishers, New York-London-Paris, 1966. MR 0224958
- Lawrence Zalcman, Mean values and differential equations, Israel J. Math. 14 (1973), 339–352. MR 335835, DOI 10.1007/BF02764713
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 221 (1976), 97-118
- MSC: Primary 39A15
- DOI: https://doi.org/10.1090/S0002-9947-1976-0430578-4
- MathSciNet review: 0430578