## Uniqueness criteria for solutions of singular boundary value problems

HTML articles powered by AMS MathViewer

- by D. R. Dunninger and Howard A. Levine PDF
- Trans. Amer. Math. Soc.
**221**(1976), 289-301 Request permission

## Abstract:

In this paper we consider the equation \begin{equation}\tag {$1$} u''(t) + (k/t)uā(t) + Au(t) = 0,\quad 0 < t < T,\quad u(T) = 0,\end{equation} where $u:(0,T) \to D(A) \subset B$ is a Banach space valued function taking values in a dense subdomain $D(A)$ of the Banach space*B*. Here

*A*is a closed (possibly unbounded) linear operator on $D(A)$ while

*k*is a real constant. The differential equation is an abstract Euler-Poisson-Darboux equation. We give necessary and sufficient conditions on the point spectrum of

*A*to insure uniqueness of the strong solution $u \equiv 0$ as well as sufficient conditions on the point spectrum to insure uniqueness of weak solutions.

*u*is only required to satisfy (a) ${t^k}\left \| {uā(t)} \right \| \to {0^ + }$ as $t \to {0^ + }$ if $k > 1$, (b) ${t^k}\left \| {uā(t)} \right \| + {t^{k + 1}}\left \| {u(t)} \right \| \to 0$ as $t \to {0^ + },0 < k \leqslant 1$, (c) $t\left \| {uā(t)} \right \| + \left \| {u(t)} \right \| \to 0$ as $t \to {0^ + },k < 0$. The operator

*A*need

*not*possess a complete set of eigenvectors nor need one have a backward uniqueness theorem available for (1) for the Cauchy final value problem. Our techniques extend to the

*n*-axially symmetric abstract equation \begin{equation}\tag {$2$} \sum \limits _{i = 1}^n {[{\partial ^2}u/\partial t_i^2 + ({k_i}/{t_i})\partial u/\partial {t_i}] + Au = 0.} \end{equation} The proofs rest upon an application of the Hahn-Banach Theorem and the consequent separation properties of ${B^\ast }$, the dual of

*B*, as well as the completeness properties of the eigenfunctions of certain Bessel equations associated with (1).

## References

- Ali I. Abdul-Latif and J. B. Diaz,
*Dirichlet, Neumann, and mixed boundary value problems for the wave equation $u_{xx}-u_{yy} =0$ for a rectangle*, Applicable Anal.**1**(1971), no.Ā 1, 1ā12. MR**280884**, DOI 10.1080/00036817108839001 - D. G. Bourgin,
*The Dirichlet problem for the damped wave equation*, Duke Math. J.**7**(1940), 97ā120. MR**3908** - D. G. Bourgin and R. Duffin,
*The Dirichlet problem for the virbrating string equation*, Bull. Amer. Math. Soc.**45**(1939), 851ā858. MR**729**, DOI 10.1090/S0002-9904-1939-07103-6 - Frank Bowman,
*Introduction to Bessel functions*, Dover Publications, Inc., New York, 1958. MR**0097539** - J. B. Diaz and Eutiquio C. Young,
*Uniqueness of solutions of certain boundary value problems for ultrahyperbolic equations*, Proc. Amer. Math. Soc.**29**(1971), 569ā574. MR**283394**, DOI 10.1090/S0002-9939-1971-0283394-1 - D. R. Dunninger and E. C. Zachmanoglou,
*The condition for uniqueness of the Dirichlet problem for hyperbolic equations in cylindrical domains*, J. Math. Mech.**18**(1969), 763ā766. MR**0236522**
D. R. Dunninger and H. A. Levine, - D. R. Dunninger and R. J. Weinacht,
*Improperly posed problems for singular equations of the fourth order*, Applicable Anal.**4**(1974/75), no.Ā 4, 331ā341. MR**397208**, DOI 10.1080/00036817508839100 - David W. Fox and Carlo Pucci,
*The Dirichlet problem for the wave equation*, Ann. Mat. Pura Appl. (4)**46**(1958), 155ā182. MR**104902**, DOI 10.1007/BF02412914 - Fritz John,
*The Dirichlet problem for a hyperbolic equation*, Amer. J. Math.**63**(1941), 141ā154. MR**3346**, DOI 10.2307/2371285 - Eutiquio C. Young,
*Uniqueness theorems for certain improperly posed problems*, Bull. Amer. Math. Soc.**77**(1971), 253ā256. MR**268529**, DOI 10.1090/S0002-9904-1971-12706-4 - Eutiquio C. Young,
*Uniqueness of solutions of the Dirichlet problem for singular ultrahyperbolic equations*, Proc. Amer. Math. Soc.**36**(1972), 130ā136. MR**364887**, DOI 10.1090/S0002-9939-1972-0364887-6 - Einar Hille and Ralph S. Phillips,
*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR**0089373**
G. N. Watson,

*Uniqueness criteria for solutions of abstract boundary value problems*(manuscript).

*Theory of Bessel functions*, Cambridge Univ. Press, Cambridge; Macmillan, New York, 1922.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**221**(1976), 289-301 - MSC: Primary 34G05; Secondary 35Q05, 35R20
- DOI: https://doi.org/10.1090/S0002-9947-1976-0404796-5
- MathSciNet review: 0404796