Deformations of formal embeddings of schemes
HTML articles powered by AMS MathViewer
- by Miriam P. Halperin
- Trans. Amer. Math. Soc. 221 (1976), 303-321
- DOI: https://doi.org/10.1090/S0002-9947-1976-0407016-0
- PDF | Request permission
Abstract:
A family of isolated singularities of k-varieties will be here called equisingular if it can be simultaneously resolved to a family of hypersurfaces embedded in nonsingular spaces which induce only locally trivial deformations of pairs of schemes over local artin k-algebras. The functor of locally trivial deformations of the formal embedding of an exceptional set has a versal object in the sense of Schlessinger. When the exceptional set ${X_0}$ is a collection of nonsingular curves meeting normally in a nonsingular surface X, the moduli correspond to Laufer’s moduli of thick curves. When X is a nonsingular scheme of finite type over an algebraically closed field k and ${X_0}$ is a reduced closed subscheme of X, every deformation of $(X,{X_0})$ to $k[\varepsilon ]$ such that the deformation of ${X_0}$ is locally trivial, is in fact a locally trivial deformation of pairs.References
- A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. Nos. 4, 6, 8, 20 (1960-1961). MR 30 #3885; 36 #177a,b.
- Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 1–42 (French). MR 82175 A. Grothendieck, Séminaire de géométrie algébrique, Inst. Hautes Études Sci. 1 (1960-1961), Exposés I à V.
- M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88–135. MR 260747, DOI 10.2307/1970602
- M. Artin, The implicit function theorem in algebraic geometry, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968) Oxford Univ. Press, London, 1969, pp. 13–34. MR 0262237
- Egbert Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/68), 336–358 (German). MR 222084, DOI 10.1007/BF01425318
- Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 137127, DOI 10.1007/BF01441136
- Robin Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63–94. MR 193092
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- Henry B. Laufer, Deformations of resolutions of two-dimensional singularities, Rice Univ. Stud. 59 (1973), no. 1, 53–96. MR 367277
- David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22. MR 153682 D. S. Rim, Formal deformation theory, SGA 7, Exposé VI, Lecture Notes in Math., vol. 288, Springer-Verlag, Berlin and New York, 1972.
- Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222. MR 217093, DOI 10.1090/S0002-9947-1968-0217093-3
- G. N. Tjurina, The rigidity of rationally contractible curves on a surface, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 943–970 (Russian). MR 0246880
- Philip Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419–454. MR 291170, DOI 10.2307/2373333
- Philip Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1971), 51–72. MR 285536, DOI 10.1016/0040-9383(72)90022-5
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 221 (1976), 303-321
- MSC: Primary 14D15; Secondary 14E15
- DOI: https://doi.org/10.1090/S0002-9947-1976-0407016-0
- MathSciNet review: 0407016