$SK_{1}$ of $n$ lines in the plane

Author:
Leslie G. Roberts

Journal:
Trans. Amer. Math. Soc. **222** (1976), 353-365

MSC:
Primary 14F15; Secondary 14C20

DOI:
https://doi.org/10.1090/S0002-9947-1976-0422278-1

MathSciNet review:
0422278

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We calculate $S{K_1}(A)$ where *A* is the coordinate ring of the reduced affine variety consisting of *n* straight lines in the plane.

- Sergio Antoy,
*Sul calcolo del gruppo di Picard di certe estensioni intere semplici*, Ann. Univ. Ferrara Sez. VII (N.S.)**18**(1973), 155โ167 (Italian, with English summary). MR**332757**
R. K. Dennis and M. Krusemeyer, ${K_2}$ - R. Keith Dennis and Michael R. Stein,
*The functor $K_{2}$: a survey of computations and problems*, Algebraic $K$-theory, II: โClassicalโ algebraic $K$-theory and connections with arithmetic (Proc. Conf., Seattle Res. Center, Battelle Memorial Inst., 1972) Springer, Berlin, 1973, pp. 243โ280. Lecture Notes in Math., Vol. 342. MR**0354815** - Jimmie Graham,
*Continuous symbols on fields of formal power series*, Algebraic $K$-theory, II: โClassicalโ algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 474โ486. Lecture Notes in Math., Vol. 342. MR**0364187** - John Labute and Peter Russell,
*On $K_{2}$ of truncated polynomial rings*, J. Pure Appl. Algebra**6**(1975), no. 3, 239โ251. MR**396595**, DOI https://doi.org/10.1016/0022-4049%2875%2990019-5 - John Milnor,
*Introduction to algebraic $K$-theory*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72. MR**0349811** - Ferruccio Orecchia,
*Sui gruppi di Picard di certe algebre finite non integre*, Ann. Univ. Ferrara Sez. VII (N.S.)**21**(1975), 25โ36. MR**404258** - Leslie G. Roberts,
*Higher derivations and the Jordan canonical form of the companion matrix*, Canad. Math. Bull.**15**(1972), 143โ144. MR**316474**, DOI https://doi.org/10.4153/CMB-1972-027-6 - Leslie G. Roberts,
*The $K$-theory of some reducible affine varieties*, J. Algebra**35**(1975), 516โ527. MR**404259**, DOI https://doi.org/10.1016/0021-8693%2875%2990063-0 - Wilberd van der Kallen, Hendrik Maazen, and Jan Stienstra,
*A presentation for some $K_{2}(n,R)$*, Bull. Amer. Math. Soc.**81**(1975), no. 5, 934โ936. MR**376818**, DOI https://doi.org/10.1090/S0002-9904-1975-13894-8

*of*$k[X,Y]/XY$,

*a problem of Swan, and related computations*(to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
14F15,
14C20

Retrieve articles in all journals with MSC: 14F15, 14C20

Additional Information

Article copyright:
© Copyright 1976
American Mathematical Society