Algebras of functions on semitopological left-groups
HTML articles powered by AMS MathViewer
- by John F. Berglund and Paul Milnes
- Trans. Amer. Math. Soc. 222 (1976), 157-178
- DOI: https://doi.org/10.1090/S0002-9947-1976-0422998-9
- PDF | Request permission
Abstract:
We consider various algebras of functions on a semitopological left-group $S = X \times G$, the direct product of a left-zero semigroup X and a group G. In §1 we examine various analogues to the theorem of Eberlein that a weakly almost periodic function on a locally compact abelian group is uniformly continuous. Several appealing conjectures are shown by example to be false. In the second section we look at compactifications of products $S \times T$ of semitopological semigroups with right identity and left identity, respectively. We show that the almost periodic compactification of the product is the product of the almost periodic compactifications, thus generalizing a result of deLeeuw and Glicksberg. The weakly almost periodic compactification of the product is not the product of the weakly almost periodic compactifications except in restrictive circumstances; for instance, when T is a compact group. Finally, as an application, we define and study analytic weakly almost periodic functions and derive the theorem, analogous to a classical theorem about almost periodic functions, that an analytic function which is weakly almost periodic on a single line is analytic weakly almost periodic on a whole strip.References
- R. P. Hunter and L. W. Anderson, On the infinite subsemigroups of a compact semigroup, Fund. Math. 74 (1972), no. 1, 1–19. MR 296204, DOI 10.4064/fm-74-1-1-19
- John F. Berglund, On extending almost periodic functions, Pacific J. Math. 33 (1970), 281–289. MR 412742, DOI 10.2140/pjm.1970.33.281
- J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Mathematics, No. 42, Springer-Verlag, Berlin-New York, 1967. MR 0223483, DOI 10.1007/BFb0073920
- N. Bourbaki, Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann, Paris, 1971. MR 0358652
- C. Corduneanu, Almost periodic functions, Interscience Tracts in Pure and Applied Mathematics, No. 22, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1968. With the collaboration of N. Gheorghiu and V. Barbu; Translated from the Romanian by Gitta Bernstein and Eugene Tomer. MR 0481915
- K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 131784, DOI 10.1007/BF02559535
- K. de Leeuw and I. Glicksberg, Almost periodic functions on semigroups, Acta Math. 105 (1961), 99–140. MR 131785, DOI 10.1007/BF02559536
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Robert Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119–125. MR 88674
- A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168–186 (French). MR 47313, DOI 10.2307/2372076
- C. J. Knight, W. Moran, and J. S. Pym, The topologies of separate continuity. I, Proc. Cambridge Philos. Soc. 68 (1970), 663–671. MR 267520, DOI 10.1017/s0305004100076659
- Paul Milnes, Compactifications of semitopological semigroups, J. Austral. Math. Soc. 15 (1973), 488–503. MR 0348030, DOI 10.1017/S1446788700028858
- Theodore Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630–641. MR 270356
- Vlastimil Pták, An extension theorem for separately continuous functions and its application to functional analysis, Czechoslovak Math. J. 14(89) (1964), 562–581 (English, with Russian summary). MR 172108, DOI 10.21136/CMJ.1964.100640
- Chivukula Ramamohana Rao, Invariant means on spaces of continuous or measurable functions, Trans. Amer. Math. Soc. 114 (1965), 187–196. MR 174938, DOI 10.1090/S0002-9947-1965-0174938-0 E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, London, 1939.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 222 (1976), 157-178
- MSC: Primary 43A60; Secondary 22A20
- DOI: https://doi.org/10.1090/S0002-9947-1976-0422998-9
- MathSciNet review: 0422998