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ABSTRACT.   An approximation theory is given for a very general class of

elliptic quadratic forms which includes the study of 2nth order (usually in in-

tegrated form), selfadjoint, integral-differential equations.   These ideas follows in

a broad sense from the quadratic form theory of Hestenes, applied to integral-

differential equations by Lopez, and extended with applications for approxi-

mation problems by Gregory.

The application of this theory to a variety of approximation problem areas

in this setting is given.  These include focal point and focal interval problems

in the calculus of variations/optimal control theory, oscillation problems for

differential equations, eigenvalue problems for compact operators, numerical

approximation problems, and finally the intersection of these problem areas.

In the final part of our paper our ideas are specifically applied to the con-

struction and counting of negative vectors in two important areas of current

applied mathematics: In the first case we derive comparison theorems for gen-

eralized oscillation problems of differential equations.  The reader may also ob-

serve the essential ideas for oscillation of many nonsymmetric (indeed odd order)

ordinary differential equation problems which will not be pursued here.   In the

second case our methods are applied to obtain the "Euler-Lagrange equations"

for symmetric tridiagonal matrices.   In this significant new result (which will

allow us to reexamine both the theory and applications of symmetric banded

matrices) we can construct in a meaningful way, negative vectors, oscillation

vectors, eigenvectors, and extremal solutions of classical problems as well as

faster more efficient algorithms for the numerical solution of differential equa-

tions.

In conclusion it appears that many physical problems which involve sym-

metric differential equations are more meaningful presented as integral differ-

ential equations (effects of friction on physical processes, etc.). It is hoped that

this paper will provide the general theory and present examples and methods to

study integral differential equations.
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1.  Introduction. The main purpose of this paper is to present an approx-

imation theory of quadratic forms which is applicable to a very general class of

quadratic forms and to linear selfadjoint operators of a generalized Fredholm

type. That is 2wth order, integral-differential systems such as T»(r) = vß~l(t),

or as the generalized system:

■§; W>1 -JS VT1™ + • • • + t-irm)] = o,

where arcs x(r) = (x,(r), x2(t),. . . , xp(t)) define equations

i (0 - Kß{t)x^(t) + fofas, t)xV>(s) ds,

(a,,ß = 1, . . . , p; k = 1, . . . , « - 1; i,j = 0, . . . , ri). In the above Rfat),
K'£ß(t) satisfy smoothness and symmetry properties sufficient to guarantee that

our system is the Euler-Lagrange equation for an appropriate quadratic form;

x£'(t) denotes the ith derivative of the crth component function; and repeated

indices are summed.  For p = 1 and n — 1 we obtain (ignoring subscripts) the

generalized equation

£ ¡Rn(t)xm(t) + £* Kn(s, t)x«\s) ds]

= Ri0(t)xV\t) + j*Ki0(s, r)x<''>(s) ds
la

where i = 0, 1.  For p = 1 we obtain the 2nth integral-differential equation

(in generalized form)

¿T WM - ¿S 1^(0} + ̂  [f-2(t)] -... + (-ir At) = o.

Applications of our theory to approximating problems dealing with eigen-

value problems, oscillation problems or focal point problems, and numerical

problems will be considered.

The fundamental quadratic form theory was given by Hestenes in 1951 to

handle recurring "second variation" problems in the calculus of variations. This

theory was generalized by Gregory to an approximation theory of quadratic

forms.  In one sense this paper is an application of these ideas to a very general

problem in differential equations.

The outline of this paper is as follows: In §2 we present the theory of

quadratic forms by Lopez. The connection between the quadratic form theory

and the Euler-Lagrange equations, plus the transversality conditions discussed
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below, are the main results.  In §3 we present the approximation theory of

quadratic forms by Gregory which is sufficiently general to handle the quadratic

forms in §2. The main results are given in terms of inequalities involving non-

negative indices. In particular we show that the hypotheses for these inequalities

are sufficiently general to include the "resolution spaces" of Hestenes [6] for

focal point theories and "continuous" perturbations of coefficients of quadratic

forms and integral-differential equations.

In §4 we extend the approximation setting of §3 to obtain an approximate

theory of focal points and focal intervals. These results are then interpreted to

obtain existence theorems and other properties for 2nth order integral-differential

equations systems. In §5 we discuss in (a general way) how this theory may be

applied to a multitude of problems. In particular we discuss in some detail the

application to numerical focal point problems.

The inequalities such as (15) are used on three levels in this paper. The

first level leads to a theory of quadratic forms with applications given by Hes-

tenes [6] and Lopez [8]. The second level leads to an approximation theory for

"level one" problems exempUfied by Theorems 11 to 15. A third level is a nu-

merical approximation theory for the "level two" problems such as in §5.

The statements "2nth order equations" or "generalized equations" refer to

the integrated form TJj(r) = vjj~lif), or to the nth derivative of this expression

if it exists.

2.  Fredholm type quadratic forms.  In this section we give the quadratic

form theory leading to the integral-differential equations of § 1.  A part of this

section is found in [8]. This work is an "application" of the quadratic form

theory of Hestenes [6].

The fundamental HUbert space A considered in this section is the set of

functions zit) = [zxit), . . . , rp(r)] whose ath component, zjf), is a real-

valued function defined on the interval a < t < b of class C"~l ; z^~x'it) is

absolutely continuous and z¡^\t) is Lebesgue square integrable on a < t < b.

The inner product is given by

(0 (*, y) = x«\a)yWia) + £xi"\t)y^\t) dt

where a = 1,...,/?; k = 0,...,«- 1; superscripts denote the order of differ-

entiation; and repeated indices (except for n) are summed.

The fundamental quadratic form /(x) is given by

Jix) = Hix) + P Pk'lßis, f)*^)*^« ds dt
(2) .

+ JaKßit)x«Kt)xp!)it)dt
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(a, ß = 1, . . . , p; /,/ = 0, . . . , n), where R'lßit) = R'^if) are essentiaUy

bounded and integrable functions on a < t < b;

(3) Hix)=Ak'ßxik\a)x^ia),

Al'ß =Alßkaik,l = 0,...,n- 1) are n2p2 real numbers; **>, 0 = *?*('. *)

are essentially bounded and integrable functions on a < t < Z>; and

(4> WK *<»>*»«*«

holds almost everywhere on a < r < ft, for every it = (7Tj, . . . , jr ) in ¿p, and

some n > 0. This inequality is the ellipticity condition of Hestenes in this set-

ting [6].

The connection between the quadratic forms and integral-differential equa-

tions is now given.

Let 8 denote a subspace of A such that x is in 8 if and only if

(5a) ¿7(x) = Mkax?Xa) = 0,     xß'\b) = 0

ia, ß= 1, ... ,p;k,l = 0, ... ,n- l;y= 1, ... ,m<np) where M*a are

real numbers such that the linear functional LJx) are Unearly independent on

A.  Let 8(A), a < A < b, denote the subspace of 8 whose component functions

satisfy

(5b) x^\t) = 0   onA<f<iforJv = 0,1.n-1.

For any arc x(r) in A set

(6) Tßit) = Rllßit)x^it) + f*K%is, t)x«\s) ds

for almost all t on a < t < b. Define the recursive relations

(7a)     vîit) = faT<>is)ds + cl

(7b)     u* it) = fa [rk is) - vkfl is)] dx + ck      ik=l,...,n-l),

where c°ß, . . . , cß~l are real numbers. Let Jix,y) be the bilinear form asso-

ciated with Jix), i.e. ¿(x) = /(x, x).

Theorem  1. Let Jix) be the quadratic form given by (2).  There exists

an arc x = (Xj(r), . . . ,xpit)) in A such that Jix,y) = 0 for all y = (y,(r),

• • • . ypiÛ) in 8(A) if and only if the constants c°, . . . , cjp1 in (7) and con-

stants px, . . . ,pm can be chosen such that the Euler equations

(8) rnßit) = iff\t)      iß=l,...,p)

hold almost everywhere on a <t < A, and the transversality conditions
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(9) A*'ßx<*Ha) + HyM'yß - i£(«) = 0

hold at t = a.

The proof of this result follows in the expected way from the method of

integration by parts or by the Riesz Representation Theorem for Hilbert spaces.

For h = 1 and K'lß(s, t) identically zero for all indices, the results are given in

Hestenes [6, pp. 535, 541, 542].

We remark that [10] gives a more general theorem and includes the com-

plex case. We also note that (8) is the integrated form of the 2/ith order inte-

gral-differential equation (if it exists)

<10>    -§r W)] - ¿S WlW] + • • • + (-i)" Tp°(i) = o.

3. The approximation theory.  In this section we state the fundamental

approximation hypothesis. As examples of this hypothesis we show ( in Theo-

rem 8) that our hypothesis is satisfied by approximation quadratic forms on the

space B of §2 defined by (5a).  In Theorem 10 we show that our hypothesis is

satisfied by the "resolution spaces" B(X) of (5b).

We now state the approximation hypothesis given in [1]. These hypoth-

eses are contained in conditions (11) and (12). In this section A will denote a

Hilbert space with inner product (x,y) and norm ||x|| = (x, x)1'2. Strong con-

vergence will be denoted by xq => x0 and weak convergence by xa —> x0. The

bilinear forms Q(x,y) in this paper are assumed to be bounded and symmetric.

The associated quadratic form is given by Q(x) = ß(x, x).

Let 2 be a metric space with metric p. A sequence {ar}in 2 converges

to a0 in 2, written or—+o0, if \imr=a,p(or, o0) = 0.  For each o in 2 let

A(o) be a closed subspace of A such that

(11a) if ar —* o0, xr in k(or), xr -+y0 then yQ is in A(a0);

(lib) if x0 is in A(a0) and e > 0 there exists 5 > 0 such that whenever

p(o, o0) <8, there exists x0 in A(o) satisfying ||x0 -x0|| < e.

For each o in 2 let J(x; a) be a quadratic form defined on A(o) with

J(x,y; a) the associated bilinear form.   For r = 0, 1, 2, ... let xr be in A(or),

yr in A(ar) such that: if xr —> xQ,yr =>y0 and ar —* a0 then

02a> lim J(xr,yr;or)=J(x0,y0;o0);

(12b) lirn inf/(x,; or) >J(x0; a0);

( 12c) Ihn J(xr; ar) = J(x0 ; oQ) implies xr => x0.

The form J(x) is elliptic on A if conditions (12b) and (12c) hold with
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J(x) replacing J(x; o) and A replacing A(o). The signature (index) of ß(x) on

a subspace V of A is the dimension of a maximal, linear subclass E of V such

that x =£ 0 in E implies ß(x) < 0. The nullity of ß(x) on V is the dimension of

the space £>0>= {x in V\ Q(x,y) - 0 for ally in V } ■ It can be shown that the

sum of the index and nullity is the dimension of a maximal subclass F of V such

that x =£ 0 in F implies ß(x) < 0.  In this paper we denote the index and nullity

of J(x; o) on A(a) by s(o) and n(o) respectively.  Finally the bilinear form

ß(x,.y) is compact if xq -*x0 andyq —>y0 implies Q(xq,yq) —> ß(x0,^0).

ß(x) is compact if Q(x,y) is.

Theorems 2 to 5 have been given in [1].

Theorem 2. Assume conditions (1 la), (12b) and (12c) hold.  Then for

any o0 in 2 there exists 8 > 0 such that p(o0, a)<8 implies

(13) s(o) + n(o) < s(o0) + n(o0).

Theorem 3. Assume conditions (1 lb) and (12a) hold.  Then for any o0

in 2 there exists 5 > 0 such that p(a0, a) <8 implies

(14) s(a) < s(a).

Combining Theorems 2 and 3 we obtain

Theorem 4. Assume conditions (11) and (12) hold.  Then for any a0

in 2 there exists S > 0 such that p(o, o0) < 8 implies

(15) s(o0) < s(o) < s(o) + n(o) < s(o0) + n(o0).

Corollary 5. Assume S > 0 has been chosen such that p(o, o0) < 8

implies inequality (15) holds.   Then if p(o, oQ) < 8 we have

(16a) n(a)<n(a0),

(16b) n(o) = n(a0) implies s(o) = s(o0),

(17) "(°o) = 0 implies s(a) = s(a0) and n(a) = 0.

In the remaining part of this section we show that problems of §2 satisfy

the hypothesis given at the beginning of this section and hence Theorems 2 to

5. Theorem 6 characterizes weak and strong convergence in A with inner pro-

duct given by (1). This result is the expected generalization given by Hestenes

[6, Lemma 4.1] for n = 1 and K'^(s, t) identically zero for all indices. Theo-

rem 7 describes the compact (weakly continuous) quadratic forms associated

with J(x) given by (2) and contains one of the fundamental ideas of elliptic

or Legendre forms given by Hestenes [6, Theorem 11.6].  Both theorems are

given in [8]. In Theorem 6 let a = 1,..., p and k — 0,..., n — 1 ; then we have
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Theorem 6. The relation xq = [xqXit),xq2it), . . . ,xqpit)] converges

strongly to x0 = [x01(r), x02it), . . . , x0pit)], denoted by xq => x0, holds if

and only if, for each aandk, x$(0) ^xfâ (0) and xfflt) -» x^(t) in the

mean of order two.  Similarly xq converges weakly to x0, denoted by xq —-► x0,

holds if and only if, for each a and k, xqkJiO) -*■ x$(0) and xfflt) -* x$(t)

weakly in the class of Lebesgue square summable functions. In either case for

each a and k, xqkJit) —► xfflit) uniformly ona<t<b.

Theorem 7. If Jix) is given in (2) and

Dix) = j\"a»it)xi"Xt)xß»\t)dt

then Kix) = Jix) - Dix) is compact.

We note that Kix) is Jix) except for the terms which give rise to the

principal part

of equation (10). Furthermore Dix) is elliptic (in the sense of Hestenes) and

generates a norm on 8 equivalent to (1). If Kxix) is any compact form then

Kxix) + Dix) is elliptic and thus has finite index and nullity.

In the remainder of this section we assume for each o in a metric spaces

(2, p) quadratic forms of the type

Jix; o) = AklßaxikKa)xß'\a)

(18) + $bJbaK%ois, t)x$is)xf{t) ds dt

+   R%a{t)x£{t)xf{t) dt

where the indices a, ß, k, I, i, and /, symmetry and smoothness properties of

Aaßa, K'lßa, and Raßa are those associated with equation (2).  In order to Ulus-

trate later developments we wül show that conditions (12) hold if the coefficients

Aaßo, K^ßois, t), and Raßait) of (18) are continuous in o and continuous (for

fixed o) in the independent variables t and s. We will also show that conditions

(11) hold on "resolution subspaces" 8(A) of B.

Theorem 8. Let 8 denote the space of functions given by (5). Let AkJßo,

K'lßais, t), and Raßait) satisfy the continuity properties given above.  Then con-

ditions (12) hold on 8.

For (12a), if xr —■* x0, yr =*• ,y0 and or —*■ o0 then

Uixr,yr; or) -Jix0,y0; a0) I < Uixr,yr; or) -Jixr,yr; o0) I

+ \Jixr,yr; °o) -Jix0>y0> aoH
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The second term becomes arbitrarily small as J(x,y; o0) is elliptic on 8.  That

is it can be expressed as the difference D(x,y) - K(x,y) where D is topolog-

ically equivalent to the inner product (x,y), and K(x,y) is compact. Equiva-

lently the second term becomes small by use of Theorem 6 since the coefficients

are fixed.

The first term is bounded by Mx$(o)\\xr\\ ||,yr|| <M2<p(o) where

«Ka) = 3sup{ \R%0o(t)-R%0(t)\,\K%0o(s,t)-K%0(s,t)\, \AkaßaQ -Aka'ß0\}

and the supremum is taken for s, t in [a, b] ; a, ß = 1, . . . , p; /, / = 0, . . . , n;

k, I = 0, . . . , n - 1. Thus the first difference tends to zero as o —*■ o0 by the

continuity of the coefficients and the fact that both weak and strong convergence

implies boundedness by Theorem 6.

Similar arguments for (12b) and (12c) hold.  For example, if xr —► x0

then

J(xr; ar) -J(x0; o0) =J(xr; a,) -J(xr; o0)+J(xr; o0) -J(x0; aQ).

Since

|/(x,; or) - J(xr; o0) | < M3\p (or) -* 0   as or —»• a0,

(12b) holds since J(x; o0) is elliptic and hence

lim ¡nf/(xr; o0) >J(x0; o0).

Finally if xr —> x0, or —* o0, J(xr; or) —» /(x0 ; a0), then

|/(xr; or)-J(x0; a0) | > I |/(x,; or) -J(xr; oQ) \ - \J(x0; oQ) -J(xr; o0) 11.

As above J(xr; or) —+ J(xr; o0) so that J(xr; a0) —> J(x0; o0). But J(x; o0) is

elliptic and therefore xr=>x0. This completes the proof.

For the next theorem we will define a resolution {RÇK) \a < X < b} of a

subspace R. That is for each X in [a, b], let R(K) be a closed subspace of R

given by (5) such that R(a) = 0, R(b) = R,a<\<\2<b implies R(XX) C

RÇK2). We usually require one or both of the additional hypotheses:

/•jo \ RÇk0) =     (I    R(k)   whenever a < X0 <b;

(19b) R(\) = cl(    U     ROS)    whenever a < X0 < b

where cl(5) denotes the closure of the set S.

Theorem 9 has been given in [2, Theorem 2].

Theorem 9. Hypothesis (19) implies (11) in the R, o setting. In par-

ticular (19a) implies (11a) while (19a) implies (1 lb).
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Thus, in particular, for the resolution spaces given by (5b) we have

Corollary 10. Hypothesis (5b) implies (11).

4. The approximation results.  In this section we will show that inequality

(15) can be applied in a general way to obtain an approximation focal point

theory. This theory can then be applied to a multitude of approximation prob-

lems for 2nth order integral-differential equations of form (10).

Let M = A x S be the metric space with metric d defined by d(px, p2) =

IA2 - Xx | + p(ct2, ox) where px = (X,, ox), p2 = (X2, o2); (2, p) is a metric

space; and A = [a, b] with the usual absolute valued metric.  For each p =

(X, a) in M and Jix; o) in (18), define Jix; p)- Jix; o) on the space C(p) =

A(a) n 8(X)-  Let sip) = s(X, a) and n(p) = n(X, a) denote the index (signature)

and nullity of Jix; p) on C(p).

In many senses Theorem 11 is the main result for applications to approx-

imation problems. It allows us to extend (15) to more general problems. This

result has been given in [3, Theorem 7].

Theorem 11. Assume that the quadratic forms Jix; o) and the spaces

A(a) satisfy (11) and (12). For any p0 - (X0, a0) in M there exists S > 0

such that if p = (X, a), d(p0,p) < 5 then

(20) s(X0, a0) < s(X, a) < s(X, o) + n(\,o)< s(X0, c;0) + n(X0, a0).

Furthermore

(21) n(X0>°o) = 0   ¿"iptfes   s(X, a) = s(X0, a0) ami n(X, o) = 0.

We now digress to interpret Theorem 11 for the integral-differential equa-

tions (8) or (10). For convenience we will assume A(p) = B. For each o in S

and quadratic form Jix; o) given by (18) let

(6)0 T'ßoit) = R^ßait)xlait) + j'Kßais, t)x«\s) ds,

(7a)o »%(*) = frßo(*)d' + c°Pa,

(7b)a vkait) = fa [rk0is) - „&- ] ds + ck0,

(8)o 1^(0-«jE1«.

(9)a ¿ÍM&«) + M-ya^p - i« = 0,

(io)a    £ [ifcow -^ [ijFCO] +..-+(- D%°oC) - o
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be associated with equations (6) through (10) in the obvious manner. We recall

that the nullity of ß(x) on V is the dimension of V0 where V0 = {x in V\

Q(x, y) = 0 for all j in V}- Then by Theorem 1 we have

Theorem 12. The integer n(k, o) is the number of distinct nonzero so-

lutions x(t) = (xx(t), x2(t), ..., xp(t)) to

(8)a rnßa(t) = vnß-l(t)

satisfying the transversality conditions

(9)o Aklßax«Xa) + pyaMyß - vlßa(a) = O

and the boundary conditions

(22) Mkyax«\a) = 0,     x<°(X) = 0

(o:, ß = 1, . . . , p; k, I = 0,. . . , « - 1; 7 = 1,. . ., m < np).

We note that for a0 fixed s(X, o0) and /w(X, o0) = s(X, a0) + «(X, o0) are

nondecreasing nonnegative integer-valued functions of X. It has been shown in

[2, Theorem 6] that s(X - 0, 0) = s(X, 0) and in [2, Theorem 8] that the dis-

joint hypothesis of Theorem 13 implies s(X + 0, o) = s(X, o) + n(X, a). Thus

s(X + 0, o0) - s(X - 0, a0) = n(\, o0). These results follow from (20). This

disjoint hypothesis is usually called "normality" in problems of differential equa-

tions, calculus of variations, and control theory.

A point X at which s(X, a0) is discontinuous will be called a focal point

ofJ(x; o) relative to B(X) (X in A). The difference /(X, o0) = s(X + 0, o0) -

s(X - 0, o0) will be called the order of the focal point.  A focal point will be

counted the number of times equal to its order.

Theorem 13. Assume for a0 in 2 that C0(XX, oq) n C0(X2, a0) = 0

when Xx ± X2, then f(a, a0) - 0, /(X, a0) = «(X, o0) on a < X < b.  Thus if

X0 in A the following quantities are equal:

(i) the sum 2a<K<XQn(\, aQ),

(ii) the signature s(X0, o0) ofJ(x; a) on B(X0),

(iii) the sum 2 s(X(. + 0, o0) - s(Xf, a0) rafeen over a// Xf, such that a <

Xf < Xq ami s(X, o0) discontinuous at \¡,

(iv) rAe number of focal points on a < X < X0,

(v) r/ie number of\¡ and corresponding x ¥= 0 as described in Theorem 12

with a <\¡ <\.

For the approximation setting we can say much more. In the next two

results we assume that o0 in 2 satisfies C0(\x, a0) n C0(X2, o0) = 0 when
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Xj i= \2. Since this implies that n(X, o0) = 0 except for a finite number of

points X in A we have

T HEOREM  14. Assume X' and X" are not focal points of o0 (a < X' <

X" < b) and \qio0) <\ + l (o0) < • • • < \+fc_i (o0) are the k focal points

of o0 on (X', X").  77ien there exists an e > 0 such that pio, o0) < e implies

\ia) < \ + ii°) < * * * < \+k-ii°) are tne k focal points of a on (X', X").

Corollary 15. 77ie kth focal point Xfc(a) is a continuous function of

o(*=-l,2,...).

We now turn our attention to the case where a nonzero solution to rßa it)

= Ußä'(r) subject to (9)o is identically zero on a subinterval of A ("abnormal"

problem).  In this case /(X, o0) # 0 if and only if X is the right-hand endpoint

of the subinterval; s(è, o0) counts the number of such intervals. A detailed ex-

planation of abnormal problems may be found in [2] and [3]. This phenomenon

is the "focal interval" problem encountered in optimum control theory. It

should be regarded as a generalized type of oscillation problem.

5.  Further problems. The purpose of this section is to indicate how this

theory may be applied to a variety of problems in this setting.  For purposes of

convenience we wiU designate problem areas in the foUowing way: (F) wiU de-

note the approximation theory for focal points and focal intervals discussed in

§4; (E) wiU denote the approximation theory for eigenvalues of compact oper-

ators (quadratic forms) in this setting; (0), osculation theory; (W), numerical

approximation. We also note that these problem areas have interesting inter-

sections, for example: (FW) denotes a numerical approximation theory for focal

points, (EN ) denotes a numerical approximation theory for eigenvalues of

compact operators, etc.  It can be shown in many cases that our numerical

theory leads to efficient numerical algorithms. In this paper we will consider

additional areas (Ö) and (FM).

i0)  The problem of oscillation for general Fredholm equations.  While

there is a great deal of mathematical literature on oscUlation theory for less gen-

eral problems we note that the oscUlation problem as we define it is an imme-

diate consequence of our theory on focal points. In fact we wUl "define" os-

culation points to be the same as focal points (just preceding Theorem 13). Our

definition is not the usual definition (except for normal problems with n = 1)

which requires a nonzero solution to vanish. In our case we wiU require con-

ditions such as (9)a and (22) in Theorem 12. In particular we note for 2nth

order differential equations we require not only x(X) = 0 but also *W(X) = 0
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(/ = 1, . . . , n - 1). This definition is more "operable" in that it makes sense

when talking about optimum problems for calculus of variations/optimum control

theory, comparison theorems and Sturm separation theorems.

Thus an approximation theory for oscillations of generalized Fredholm

equations is immediately obtained from Theorem 12 with the definition of os-

cillation in the next paragraph, the inequality results (20), and the results in

Theorems 13 to 15.

Let o in 2, X in A = [a, b] and assume the notation and setting of §4.

For each a in 2 we will say that the quadratic form J(x; o) in (18), subject to

the boundary conditions Mkax^'(a) = 0, is oscillatory of degree m if s(b, o) =

m. Equation (8)a is oscillatory of degree m on a < t < b if there exists a non-

zero solution x(r) to equation (8)a such that the associated quadratic form

J(x; o), subject to the boundary conditions Mkax(a  (a) is oscillatory of degree

m. In this case the vector x(t) is an oscillatory solution of degree m on a < t <

b. Equation (8)a is oscillatory if for any integer m0> 0 there exists real num-

bers a < b such that equation (8)a is oscillatory of degree m on a < t < b and

m> m0.  Finally equation (8)a is nonoscillatory if it is not oscillatory.

We remark that problem type (OU) follows immediately from our ideas in

the same way that problem type (TU) follows from (F) in the remainder of

this paper.

(rW) 77ie numerical focal point approximation problem. The notation will

be a continuation of the notation in §4: Let ^ denote the set of all natural num-

bers i// = l/m (m = 1, 2, 3, . . .) and zero.  The metric on * is the absolute value

function ||.   LetZ=*xM = írxAxS with metric 6 (f x, f2) = | \¡i2 - \¡/x \

+ p(a2, Oj) + | X2 - Xj | where Jf = (\¡j¡, \, a¡) in Z (i = 1, 2). We define s(f )

= s(\p, X, o) to be the index (signature) of the quadratic form J(x; f ) on the

space C(f) = B(X) n 5(i//) where 5(i//) and J(x; f) are defined below. The nullity

n(f ) = n(ty > X, a) is defined analogously in the obvious way.

For each nonzero $ in ^ the space S(\¡/) is the space of spline functions of

degree 2« - 1 (or order 2ri) with knots at the points ir(\p) — {ak=a + k(b - a)/m:

k = 0, 1, . . . , m; \¡im = 1}.  The vector space 5(i//) has dimension p(m + 1).

It is the space of arcs x(t) = (xx(t), . . . , xp(t)) where each xa(t) is a polynomial

of degree at most 2n - 1 on each subinterval (ak, ak+x) and such that the

(2n - 2)th derivative of xa(r) is continuous on [a, b].

The quadratic forms are defined from (18) in the following way.  For each

* * O^define A^ = Akaßa, K%a^(s, t) = K%a(s~, 7),_and Raßa^(t) =

Raßo^ ) where t = (ak +ak+x)/2 if ak<t<ak+x and s = (ak + ak+ x)/2 if

ak<s<ak+x (k = 0, . . . , m - 1).  Finally define
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/(*;» =Ak'ßax^ia)x,jXa)

(23) + faki?K%o* ('. t)x¡P(s)x¡f\t) ds dt

+ $aakKiLß0i,it)x<£>it)xfit)dt

on the space ¿(X) O S(i//) where X satisfies ak < X < ak + x, f = (1//, X, o).

For 1^ = 0 define s(f) = s(0, X, a) and n(f) = n(0, X, o) to be the index

and nulUty of the quadratic form Jix; o) in (18) restricted to B(K).

As above it can be shown that there exists 5 > 0 such that f0 = (0, X0, ff0)

and f = i\p, X, o) in Z, 0(?, ?0) < 5 implies

s(0, X0, o0) < j(ii», X, o) < s(i//, X, a) + ni>, X, a)

(24)

<s(0,Xo,ao)+n(0, Xo.On).

Furthermore if the "a0 problem" is normal then n(0, X0, o0) = 0 except on a

finite set of points in [a, b]. This leads to the foUowing for "normal" prob-

lems.

Theorem 16.  77ie kth focal point Xfc(o, \p) is a continuous function of

o and yp for a < X < b.

It can be shown by methods similar to those in [5] that if \p is not zero

and ak <rp <ak+x that s(i/>, X, o) is the number of negative eigenvalues of a

ik + l) x p real symmetric matrix ¿>($, o) which is sparse (a preponderance of

zeros). For p = 1 and n = 1 we obtain a tridiagonal matrix. For p = 1 we

note that the elements of a basis for 5(1/0 have support on at most 2n intervals

[ak, ak+x]. Thus our matrix is in (4n - l)th "diagonal form". The number

of negative eigenvalues can thus be obtained by a generaUzed Sturm sequence

argument applied to a difference equation of the form u¡ = cx (ut_x + c2 ¡u¡_2

+ • • • + íí4n_i>/W/-4„+i where u¡ is the determinant of the / x / submatrix

of Di\p, o) made up of the first / rows and columns and a¡<\p <al+x.

These methods are currently being applied to give an efficient, feasible

algorithm when n — 1.

6. Two specific examples. In §5 we have indicated in a general way how

our theory may be applied to a wide variety of problems. In this section we

wiU give some specific results of current interest, namely (Ö ) the oscUlation

problem and (ON) or (FW) the numerical osciUation problem discussed in §5.

In each case we consider only second order equations but for different

reasons: For oscUlation the 2nth order case using our methods is not significantly

more difficult than the second order case, if by "zero or oscUlation" we mean
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the solution x(r) and its « - 1 derivatives x'(t), . . . , x^"_1)(i) are zero at a

point. In our numerical example the higher order problems are numerically much

more complex. However, if our example is fully understood equivalent methods

should hold in the 2«th order case.  In any case, Givens' method will transform

the matrix D(ip, o) associated with the 2/ith order problem to tridiagonal form

by rotation matrices and our current methods can be applied.

Once again we remind the reader that our results subsume many results

and ideas for ordinary differential equations not yet obtained by more conven-

tional methods. Furthermore, our methods provide interesting new ideas in the

more "elementary" theory of linear algebra.

In our first result we will compare the oscillation properties of two differ-

ential equations:

(25),      (rfi)x\t))' + pfi)x(t) = fbaqfi, t) ds - J-/* Ifi, t)x'(s) ds

associated with the quadratic form

-b
Jfx)= f  [ri(t)x2(t)-pfi)x2(t)]dt

J a

+ J"* Ja%,<s, t)x(s)x(t) ds dt

+ flfjib, t)x'(s)x'(t) ds dt.

In the above i =1,2; r2(t) > rx(t) > 0, p2(t) < px(t); q2(s, t) - qx(s, t) =

u(s)u(t), l2(s, t) - lx(s, t) = v(s)v(t).

Theorem 17. Let a < \x < X2 < X3 • • • < Xm   < ô be the oscillation

points associated with equation (25)j and let a < px < p2 < p3 < • • • < pm

<b be associated with equation (25)2.   77ie« m2 <mx and for each j such

that 1 </ < m2 we have X- < p¡.

Let x(r) be any vector vanishing at a and b, then

/2(x) - Jx(x) = fba [(r2 - rx)x'2(t) ~(p2-Px)x2(t)] dt

+ [ jbau(s)x(s)dsV + [ j\(s)x'(s) dsT > 0.

Thus/2(x) >Jx(x) so that a negative vector of/2(x) is a negative vector of

Jx(x) (i.e., J2(y) < 0 implies Jx(y) < 0). The result now follows from Theorem 13.

The next theorem shows that the oscillation points of ordinary differential

equations can be "bracketed" by oscillation points of integral differential equa-

tions and conversely.
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Corollary 18. Assume that qxis, t) = lxis, t) = 0 in Theorem 17. Then

Xy. < Pj for each j such that 1 </ < m2.  Conversely, ifqxis, t) = /,($, t) = 0;

rxit) > r2it) > 0, p2it) >pxit); q2is, t) = - uis)uit), /2(s, t) = - u(s)u(r), rnen

Py < Xy /or eac/i / such that 1 <j <mx.

The above inequahties are "sharp." For example, assume the conditions

of Theorem 17, then from an argument similar to Theorem 21 below we have

Corollary 19. Let j be a nonnegative integer such that r2it) - rxit) >

0 on [a, Pj] ; px{t) -p2{t) > 0 on [a, p¡] ; or fpuis)xis)ds * 0 or J^vis)xis)dx

¥= 0 where x(s) is a solution to (25)2 on [a, p;] vanishing on \p.¡, b]. Then \¡

<p¡.

Theorem 20 (Sturm Separation Theorem). If xxit) and x2it) are

two linearly independent solutions of (25), then between any two consecutive

zeros ofxxif) there is a zero ofx2it).

The negation implies there exist points a<ax <a2 <a3 such that if sit)

is the signature of the appropriate quadratic form we have sia2+) - siax-) > 0

and sia3-) - s(a) = 0 which is clearly impossible.

A final result is on disconjugacy type theorems, thus

Theorem 21. Assume the hypothesis of Theorem 17 except that q2is, t)

** <1 i(s. r).  77ien Xt < px if px exists.   Furthermore, X, < p, unless rxit) =

r2it), Piit) = P2it) and qxis, f) = qxis, t) on [a, px] and /^1u(s)x(s)ds = 0

for any solution to (25)2 on [a, px ].

By hypothesis if jc(r) is any vector vanishing at t = a, and in the interval

\px, b], and xitx)xit2) >0on [a, px], then

¿20c) -/,(*) = J/1 [(r2 -rx)x'2 - ip2 -Px)x2it)] dt

+Í7Í11 [q2(s>f) " «¿s> w *(s)xW ds dt

+ \£lvis)x'is)dsY >0.

The result again foUows by Theorem 13.

Conversely, if x0(r) is any solution to (25)2 with x0ia) = 0 then ¿2(x)

"restricted" to [a, p, ] has value zero. If ¿2(*o) ~^i(*o) > 0 restricted to

[a, px] then by Theorem 13 we have Xt < px.

We now turn our attention to the numerical oscillation problem which is

a continuation of the ideas in (FW) of the previous section. Full details including

proofs and sample runs wiU appear elsewhere. We remark that sample runs to
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numerically solve second-order differential equations indicate that our methods

are faster and more accurate than "in-house" numerical subroutines.

For convenience we will restate our problem: Thus let

(26)        (r(t)x'(t))' + p(t)x(t) = fbaq(s, t) ds - J- fbl(s, t)x'(s) ds

be the Euler-Lagrange equation for the quadratic form

J(x)= \\(t)x'2(t)-p(t)x2(t)]dt

(27)

+ P Cite, t)x(s)x(t) ds dt + f6 f"l(s, t)x'(s)x'(t) ds dt.
J a J a J a J a

Following the ideas and methods in (FW) we set « = 1 and for fixed m

(a "large" positive integer) we set i// = \/m and 7r(t//) = {a0 = a < ax < • • •}.

Let yk(t) be the spline hat function of degree 1 on [ak_x, ak + x ] ; that is yk(t)

= 1 - m \ak -11 if ak_x < t < ak+ x and yk(t)'= 0 otherwise. Following these

ideas if x(r) = Akyk(t) where repeated indices are summed, then our approxi-

mation for J(x) in (27) is given by (23) which we write as the quadratic form

J(x;S) = AkJ(yk,y,)A,.

The matrix J(yk,y¡)"is" the tridiagonal matrix £>(^, a), and s(i/>, X, a) in (24)

represents the number of negative vectors of J(x; f ) restricted to the piecewise

linear functions x(r) = Akyk(t) defined on [a, ak] where X satisfies ak < X

< ak+j  and D(\¡i,o) has been tridiagonalized by Givens' method.

We now give a simple but elegant algorithm to find the "Euler-Lagrange

equation" of the matrix D = (dtj) = D(\p, o). This result is actually motivated

by our concept of negative vector. That is, intuitively, given D we will construct

a vector c = (cx,c2,c3, . . .)T so that (i) if C = ckyk then CDCT is as "nega-

tive as possible"; (ii) if the numbers ck "change sign" at k = mx, m2, . . . , then

the vectors Cx(t) = cxyx + • • • + cm^mi, C2(t) = cmi + 17m1 + i + • • • +

cm ym , etc., are linearly independent negative vectors, i.e., CXDC[ < 0, etc.;

(hi) the vectors Cj.C2.C3,... f°rm a '3as's f°r tne negative sPace of D; (iv) if

z(t) is a solution to (26), cx = z(ax) and m is large then z(t) is approximated by

C(t) in the mean squared norm, i.e.,

J"* (C'(t) - z'(t))2 dt-*0   as m -> °°.

To define the numbers cx, c2, c3, . . . we proceed as follows: let d¡j be

the (1 -/)th element of the tridiagonal matrix D given above, let cx = 1 and

define recursively c2,c3,cA, . . . ,ck+x,by

(28a) dxxcx +dx2c2 =0,

(28b) dktk_xck_x + dkikck +dktk+xck + x =0    for k = 2, 3, 4, . . . .
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Note that this procedure forces the first k components of the product DCT to

be zero and thus CDCT to be "as negative as possible."

Since rit) > 0 in (27) we may choose m large enough so that d¡¡ > 0,

di¡+ j < 0. We ask the interested reader to verify the following.

Theorem 22. Let Cx = icx,c2,. . . ,cm , 0, 0, 0, . . .) be given with

cx,c2,c3,... defined by (28) and mx first integer such that c¡c¡+ x > 0 is not

true.   Then CXDC\ < 0. Conversely, ifk<mx and E = icx,c2, .. . ,ck,0,

0, 0, . . .) then EDET > 0.

The obvious analogous statements for the vectors C2,C3, . . . defined

above can be demonstrated. More difficult is to show that this procedure counts

the number of negative eigenvalues in D. This has been done by the author by

showing that the sequence {ck } changes sign if and only if the appropriate Sturm

sequence for the number of negative eigenvalues of D change sign. FinaUy, the

most difficult result, that is (iv) above

("iC'it) -z'it))2 dt-+0   asm-*»,
J a

is estabUshed by use of our fundamental hypotheses (11) and (12).
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