## Weak bases and metrization

HTML articles powered by AMS MathViewer

- by Harold W. Martin PDF
- Trans. Amer. Math. Soc.
**222**(1976), 337-344 Request permission

## Abstract:

Several weak base (in the sense of A. V. Arhangel’skiĭ) metrization theorems are established, including a weak base generalization of the Nagata-Smirnov Metrization Theorem.## References

- A. Arhangel′skiĭ,
*On the metrization of topological spaces*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**8**(1960), 589–595 (Russian, with English summary). MR**125561** - A. Arhangel′skiĭ,
*New criteria for the paracompactness and metrisability of an arbitrary $T_{1}$-space*, Dokl. Akad. Nauk SSSR**141**(1961), 13–15 (Russian). MR**0131261** - A. Arhangel′skiĭ,
*Bicompact sets and the topology of spaces*, Dokl. Akad. Nauk SSSR**150**(1963), 9–12 (Russian). MR**0150733** - A. V. Arhangel′skiĭ,
*Mappings and spaces*, Russian Math. Surveys**21**(1966), no. 4, 115–162. MR**0227950**, DOI 10.1070/RM1966v021n04ABEH004169 - D. Burke, R. Engelking, and D. Lutzer,
*Hereditarily closure-preserving collections and metrization*, Proc. Amer. Math. Soc.**51**(1975), 483–488. MR**370519**, DOI 10.1090/S0002-9939-1975-0370519-6 - A. H. Frink,
*Distance functions and the metrization problem*, Bull. Amer. Math. Soc.**43**(1937), no. 2, 133–142. MR**1563501**, DOI 10.1090/S0002-9904-1937-06509-8 - Peter W. Harley III,
*Metric and symmetric spaces*, Proc. Amer. Math. Soc.**43**(1974), 428–430. MR**336713**, DOI 10.1090/S0002-9939-1974-0336713-4
P. W. Harley and G. D. Faulkner, - R. E. Hodel,
*Metrizability of topological spaces*, Pacific J. Math.**55**(1974), 441–459. MR**370520**, DOI 10.2140/pjm.1974.55.441 - Takao Hoshina,
*On the quotient $s$-images of metric spaces*, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A**10**(1970), 265–268 (1970). MR**275358** - F. Burton Jones,
*Metrization*, Amer. Math. Monthly**73**(1966), 571–576. MR**199840**, DOI 10.2307/2314785 - Harold W. Martin,
*Metrization of symmetric spaces and regular maps*, Proc. Amer. Math. Soc.**35**(1972), 269–274. MR**303511**, DOI 10.1090/S0002-9939-1972-0303511-5 - Harold W. Martin,
*Perfect maps of symmetrizable spaces*, Proc. Amer. Math. Soc.**38**(1973), 410–412. MR**314009**, DOI 10.1090/S0002-9939-1973-0314009-3 - Harold W. Martin,
*A note on the Frink metrization theorem*, Rocky Mountain J. Math.**6**(1976), no. 1, 155–157. MR**391035**, DOI 10.1216/RMJ-1976-6-1-155 - Kiiti Morita,
*A condition for the metrizability of topological spaces and for $n$-dimensionality*, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A**5**(1955), 33–36. MR**71754** - Jun-iti Nagata,
*A contribution to the theory of metrization*, J. Inst. Polytech. Osaka City Univ. Ser. A**8**(1957), 185–192. MR**97789**
—, - A. V. Arhangel′skiĭ,
*Some metrization theorems*, Uspehi Mat. Nauk**18**(1963), no. 5 (113), 139–145 (Russian). MR**0156318**
F. G. Slaughter, Jr., - A. H. Stone,
*Paracompactness and product spaces*, Bull. Amer. Math. Soc.**54**(1948), 977–982. MR**26802**, DOI 10.1090/S0002-9904-1948-09118-2 - A. H. Stone,
*Sequences of coverings*, Pacific J. Math.**10**(1960), 689–691. MR**119189**, DOI 10.2140/pjm.1960.10.689

*Metrization of symmetric spaces*(to appear).

*Modern general topology*, Bibliotheca Mathematica, vol. 7, North-Holland, Amsterdam; Wolters-Noordhoff, Groningen, 1968. MR

**41**#9171.

*Theorems on submetrizability*(unpublished).

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**222**(1976), 337-344 - MSC: Primary 54E35
- DOI: https://doi.org/10.1090/S0002-9947-1976-0423311-3
- MathSciNet review: 0423311