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CENTRALISERS OF C °° DIFFEOMORPHISMS
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BOYD ANDERSON

ABSTRACT. It is shown that if F is a hyperbolic contraction of Rn,

coordinates may be chosen so that not only is F a polynomial mapping, but

so is any diffeomorphism which commutes with F. This implies an identity

principle for diffeomorphisms G. and G2 commuting with an arbitrary Morse-

Smale diffeomorphism F of a compact manifold M: if Gx, G2 e Z(F), then

Gx = G2 on an open subset of M =» Gx — G2 on M.

Finally it is shown that under a certain linearisability condition at the

saddles of F, Z(F) is in fact a Lie group in its induced topology.

Introduction.  Let /be a C°° diffeomorphism of R" onto itself which fixes

the origin, and let Df0: Rn —► R" be its first derivative at 0. We shall describe

/as a sink on R" if it is hyperbolic and a topological contraction: i.e., (i) every

eigenvalue X of Df0 satisfies |\| < 1 and (ii) r\°^=(jfn(U) = {0} for any bounded

set U containing the origin. The k-]et off, denoted fk, is an element of Lk(n),

the group of k-jets of local diffeomorphisms of R" which preserve the origin.

We denote by L°°(ri) the group of formal power series; L°°(n) = inv lim Lk(n).

The theorem of K.-T. Chen and S. Sternberg [2], [7] applied to sinks, implies

that there is k (computed from the eigenvalues of Df0) such that the germ of

/is conjugate by a C°° diffeomorphism germ g, to some ¿^-conjugate of fk,

fk: thus

0) gfg-1 =fk.

We describe the normal form/k in §2. Two sinks /and ft are conjugate if and

only if fk and hk are conjugate in L°°(n).

It is our purpose to show that the space of diffeomorphisms commuting

with/admits a finite dimensional parametrisation.  The first main result is

Theorem 1. Let ft be any local diffeomorphism ofR" such that fkh =

hfk. Thenh = hk.

An obvious corollary is that conjugating functions g in equation (I) are

unique up to elements of the centraliser in Lk(n) of fk.

The theorem is a generalisation of a corresponding theorem of N. Kopell

[3] in which fk- /,, i.e., / is linearisable. Thus by an argument in her paper,
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there follows an identity principle for a sink, or for that matter, for a C°°

Morse-Smale diffeomorphism of a compact C°°-manifold M without boundary.

(For definitions, see [6].)

Corollary 1.  If gl and g2 both commute with f, and if U is an open

setofR"iM), then gt =g2 on Uimplies g{ —g2.

A second corollary may be adduced which describes the space of solutions

to the equation [X, Y] = 0, where AT and y are C°° vector fields on R", and

the flow <j>t generated by Y consists of hyperbolic sinks.

Corollary 2.   Let Y be a vector field germ such that Y is an elementary

contracting critical point: i.e., the eigenvalues p. of DZ0 satisfy Re(p) < 0. Let

S(Y) = {X\[X,Y]= 0}.   77ien 3(y) is the Lie algebra ofZ(pt) the centraliser

in ¿fc(n) o/0j ik chosen as above).

In order to prove the theorem, we give in §2 a normal form fk for/; it

is related to the real Jordan form which the matrix fk has in a certain faithful

linear representation of ¿fe(n). The jet fk is an invariant of C°°-conjugacy of

sinks.  Indeed, using the representation one can give an alternative proof of the

formal content of Sternberg's theorem.

The second main result is an extension of Theorem 1 to Morse-Smale dif-

feomorphisms. To a Morse-Smale diffeomorphism /, and to an orbit {x, fix),

. . . ,fmix)} in £2(/), there is associated the spectrum of Difm)x. At least

one such orbit is a sink, for which all the eigenvalues of D(fm)x have absolute

value less than 1.  A source for / is a sink for /"" ' and any other point of

Í2(/) is called a saddle.

Now let Diff °°iM) denote the topological group of C°° diffeomorphisms

of a compact manifold M, topologised by the C°° topology (see, for example

[5]). Diff°(M) contains Zif) = {gE DiîriM)\gf = fg} as a closed subgroup.

Theorem 2. Suppose fis a Morse-Smale diffeomorphism such that at

each saddle y,

do \+ñ&.

where if m is the period of fon y, \ are the eigenvalues ofD(fm)   m¡ are

nonnegative integers, and there is j =£ / with nz ■ ¥= 0.  Then as a topological

group Zif) is equivalent to a Lie group.

In a subsequent paper we prove that generically Zif) is in fact discrete;

such / cannot, for example, be a time-one map for a C°° vector field.

This paper was developed from part of my Ph.D. thesis at the University

of California at Berkeley; I would like to particularly thank my supervisor

M. Hirsch for his encouragement and help.
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1. Preliminaries. We shall adopt some notations of [4], which we briefly

recall. C°°(Rn) denotes the local ring of C°° mapping germs at the origin and

M its maximal ideal. Analogously, let W be the ideal in R[xx,.... xn] of

polynomials without constant term, hi is generated as a real vector space by the

monomials-we denote the monomial x,1 . . . xn" by x1, where 1= (iv..., in)

is an ordered «-tuple of nonnegative integers. For such I, ft -ix\ ... in! and

deg / = i*i +... + /„. We shall need the fact that there is a canonical identi-

fication of W with S," j &V (where OlV denotes the ith symmetric power of

V « Rn) under which monomials in x are identified with monomials in the

standard basis of V.

The Taylor homomorphism jk: M —* W is defined by

gdeg/f

jk(f)=zZj-^r(o)xI,

the sum being over all / with 1 < deg / < k.  As is well known, jk induces an

isomorphism M/Mfc+1 « N/N*"1"1, this quotient being denoted Jk(n, 1), the ring

of &-jets of vanishing real C°° functions. Having introduced W, we may speak of

"complex fc-jets": these are elements of W/Wfc+1 when W is the ideal of complex

polynomials in «-variables without constant term. Jk(n, n) - Jk(n, 1) ® Rn is

the space of fc-jets of functions R" to Rn and Lk(n) C Jk(n, n) the group of

jets invertible for the operation of composition.

There is a right linear action of Lk(n) on Jk(n, 1) defined by x1 • g =

jk(¡?) where g = (gx.gn) is in Lk(n). In the basis of monomials, g has

the matrix Gu = coefficient of gr on x7. Hence by sending g to the adjoint of

the linear map GIJ3 there is obtained a representation pk. Lk(n) —♦ GL(Jk(n, 1)).

The matrix of pk(g), in the basis of monomials, is Gu = coefficient of g1 on xJ'.

The indices /, J range over all monomials in « variables of degree not greater

than k.

The following facts are easy to see.

(i) pk is faithful (and presents Lk(n) as an algebraic group).

(ii) If deg/ = 1 = deg /, (pk(g))u is the Jacobian matrix of g, jx(g) =

Dg0. Moreover, if 1 < r < k and deg / = r = deg /, (pk(g))¡j is the matrix of

Dg° . . . ° Dg: OrV—*OrV (in the basis of monomials). This implies that the

eigenvalues of pk(g) are all monomials X1 of degree < k in the eigenvalues {Xx,

. . . ,X„} ofDg0.

(hi) If/is a diffeomorphism of Rn, and if deg / = 1, deg / = r < k, then

Pk(fk)u is the matrix of Iff: OrV-+ V taken in the basis {JlxJ\degJ = r}.

2. Normal forms of diffeomorphisms.  l-/ers.  Let A be a real linear oper-

ator. Then there is a basis {zx, zx, . . . , zr, ~zr, w2r+ x.wn} of C" in which
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the matrix of A is in Jordan form: if z¡ is a (generalised) eigenvector for X, so

is 1¡ for X, and w¡ are the real eigenvectors. By the real Jordan form of A, we

mean the matrix which A takes in the basis {Re^j), Im(zj), . . . , Im(zr),

W2,+ I.wn>-

Example.

Re X Im X 1

-ImX Re X 0

0         0 ReX

0         0 - ImX

Notice that there is an involution z, <—> z¡ of the basis of C" which in-

duces a corresponding involution o of the monomials, which we denote by zl

+-+z°V\ If

zI = z\izi1...zi;iirrw,   z°w = J{z\l ...i;w.

Complex jets.  A complex fc-jet or formal power series (°°-jet) F is in

normal form providing

(i) PiiFx) is in Jordan normal form,

(ii) priFr) is upper triangular for k > r > 1,

(m) (p.i/g^o^x^x'.
Real jets.  A real fc-jet or formal power series F is in normal form provid-

ing:

(i) PiiF,) is in real Jordan normal form, so there is a matrix A,, being

a sum of blocks ('. _j) so that A lpliFl)A\~l = Jordan form of Pj(Fj).

(ii) The complex power series AlFrA7l is in normal form for each k >

r>\.

It follows from (ii) that iAk)u = (-4k)o(/)a(/)' ^ conversely, if this con-

dition is satisfied for a complex formal power series or jet Ak, the eigenvalues

of whose linear part occur in conjugate pairs, then A k is derived from a real

f.p.s. via conjugation by Ax (see [1]).

A diffeomorphism germ is in normal form if its associated formal power

series is in real normal form.

Remarks.   (1) The normal form is a conjugacy invariant of formal power

series or jets, or diffeomorphisms, but it need not be unique.  For instance, if

X # 1 is real, the 3-jets

Fix, y, z) = (Xx, X2y + jc2, X3z + xy + x3),

Ox, y, z) - (Xx, X2y + x2, X3z + xy)

are distinct normal forms which are conjugate in ¿3(3), by / + (0, x2, 0).
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(2) The matrix p^FJ) will in general not be in Jordan form for k > 1.

The following lemma is a generalisation of a lemma of Sternberg [7].

Lemma.  For any (real) invertible FPS F^ there is a (real) invertible FPS

G with GFjG~l in (real) normal form.

Proof.  We construct G = lim Gk by induction on k.  If k = 1, this is the

familiar real Jordan normal form theorem for the Jacobian Fx.  For the inductive

step, we observe that if Pk(Fk) is in (real) normal form, so is pk + x(Fk). (Any

entry if1, xJ) of Pk+x(Fk) satisfies </7, xy> = 2</«, xyi X/'2, x'2) where

the sum is over all monomials/ lf 2 =fr and x 'x 2 = xJ. By inductive hy-

pothesis, some summand can be nonzero only when X1 =X l and X 2 = X 2,

in which event X1 = XJ. As before, X1 denotes a monomial in the eigenvalues

ofFx.)

It follows that if Gk is chosen so that pk(GkFkGkx) is in (real) normal

form, then Pk + i(GkFk + lGkl) will be in (real) normal form except possibly for

entries fu with deg i = 1, deg/ = k + 1. (These entries represent the contribu-

tion of DkF: OkV-+ V.) Dividing up

Mfc+1
rfc+l

M2       !<#■<*+1  M'+l Mk + 2

we see that pk + x(F„) has, in this decomposition, the form

X =

A B D

0 C E

OOF

where

is in normal form. A is the Jacobian and F is its symmetric power of degree

(k + 1). Conjugating A" by a matrix

Y =

I 0 G

0/0

0   0/

we obtain D - AG + GF in the top right-hand comer.

To prove the lemma is to solve (D - AG + GF)¡j - 0 when X' ̂  Xs; i.e.,

Du = ZAtiGiK - ZGiKFKJ with 1 </ < « and deg K = k + 1.
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Using the assumption that Pfc + i(Ffc) is upper triangular (as a complex

matrix), this equation becomes

W DiJ = GiMii - FJJ> + £ AijGjJ - £, GiKFKJ-

Supposing G-j is known for / < i, GlK for K < /, we may solve inductively for

G„whBnAtt*Fjj(i.t.\l*\J).

To prove the statement for real jets, we must know that the basis change

taking Fj into its real Jordan form takes some real jet into Y.  According to

Birkhoff [1], the condition that this be so is that (y1, xJ) = <ya{1), xó{J)), where

the involution o on monomials is defined as above. It is clear in equation (*)

that if D, A, F satisfy the condition, G will satisfy it by the same induction when

X' ¥= XJ; and otherwise the choice of Gu = 0 also satisfies the condition.

Remarks.   (1) The lemma above constitutes the formal content of the

theorem of Chen and Sternberg as in [2], [7] and [8], in the sense that by

choosing a diffeomorphism with Gx as above, we may conjugate F by G to a

diffeomorphism whose jet is in normal form. The analytic content is then to

prove that two C°° hyperbolic diffeomorphisms with the same normal form are

C°°-conjugate.

(2) If X* # X1 for any monomial X1 of degree > 1, the normal form is

linear, whereupon F is C°° conjugate to a linear map.

(3) If F is a sink (source), there is k such that X1 = X1 => deg I < k, so

that the normal form of F is a fc-jet, to which F is C"-conjugate.

3.  Centraliser. The crucial observation of this section is that if ¿: V—► V

is a linear map, and if V- 2 V¡ is its decomposition into generalised eigenspaces,

then if ¿Af = ML, each V¡ is M-invariant. Applying this fact to PkiFk) in normal

form, if Gk is a commuting jet, then PkiGk) also has the property PkiGk)¡j ¥= 0

=>XT = XJ; although of course it need not be upper triangular. Furthermore, if

Fk is a contraction and k is not less than the maximal degree on the right-hand

side of relations X* = XJ, then if G„ commutes, Gx = Gk = Gk+r for all r. In

particular, Fr1 (or Gkx) coincides with the inverse of Fk in ¿°°(n), and so the

polynomial mappingsFk, F¿"\ Gk, Gkl are globally defined diffeomorphisms

ofRn.

The theorem is an application of the following

Lemma. Let Fk be a contracting jet in normal form with k as above.  Con-

sidered as a polynomial diffeomorphism of R", for x, y in a compact K C R",

we have

(1) \Fkmix) -F~miy)\ <pim)Xkm\x -y\,

(2) IF^Cc) - F^(y)| < qim)ßkm \x - y\,
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where p, q are polynomials; X 1 = smallest eigenvalue ofFx,p = largest eigen-

value of Fv

Proof. We prove (1). Let a: V —► Sk V be defined by x —*■ x1; i.e., if

{e-} is a basis of V and the symmetric products of these vectors are denoted e1,

then the coefficient of a(x) on e1 is x1. Clearly a has a uniform Lipschitz con-

stant on K.

If 7T is the projection Sk V —* V, then F^(x) = n ° p(Fk)m ° a(x) for any

mEZ, because Fk is in normal form. Hence

It o P(Fkm) » a(x) - it o p(F~m) » a(y)\ < |ir| |p(F"m)| |a(x) - a(y)\

<const|p(Ffc)-m||x-v|.

We may write p(Fk) = SU where these two linear maps commute, S is semisimple-

we may suppose diagonal-and ¿/is unipotent. Thenp(Fk)~m =S~mU~m and

\p(FkYm I < \S~m I \U~m | < Xkmp(m).

Remark,   (deg p) + 1 = nilpotence degree of (U - I).

Proof of Theorem 1.   According to the observation at the head of this

section, with k as above, if g commutes with Fk, then for all r < °°, Pk+r(g) =

pk(g). Let gk be the polynomial diffeomorphism of degree k such that pk(gk) =

pk(g), then gkFk = Fkgk, so that we may write ggk* = / + A, commuting with

Fk, and such that A(x) = 0(xr) on a small enough neighbourhood Ur of 0 (for

any r). In fact, ft = 0. Since A(x) = (/ + A - I)(x), we have

:)| < \Fkm(I + A)F^ - F-mFkn(x)\ < p(m)Xkm\(I + h)F^(x) - F™(x)|

<p(m)Xkm |h(Fkn(x))\ < p(m)Xkm |F^(x)|r

< const p(«i)Xfemc7(«i)''jukm''|x|r.

|A(x

Choosing r and Ur such that X// < 1, and taking the limit of the right-hand side

as m —* °°, we see ft(x) = 0, because the exponential convergence of (Xpr)km

dominates the polynomial convergence of p(m)q(m)r.

4.  Centraliser of Morse-Smale diffeomorphisms. In this section we prove

Theorem 2, stated in the Introduction. If p is the number of points in Í2(/),

since Z(f) acts on Í2(/), there is a homomorphism from Z(f) to S  whose kernel

contains the identity component Z(F)0: we show Z(F)0 is a Lie group. Moreover,

we may suppose Sl(f) consists of fixed points because Z(f) C Z(fr) for any r.

If {S¡} are the sources in £2(/) and {A^} the sinks, we may choose coordi-

nates for their unstable and stable manifolds, wu(S¡) and w*(N), so that /is in

normal form, and there are Lie groups G¡ = Z(f\  „     ), G, = Z(f\  .     ). Then
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if g E Zif) acts trivially on £}(/)> g leaves invariant the w"iS¡) and wsiNj), and

so S\   u,~   e G/( g|  ,       G G.-.  Hence there is defined a homomorphism

R: Zif)o '-+ n.-./C/x g\.
By the identity principle this is injective, and it is continuous for the C°°

topology on Z(/)0.  The conclusion will follow from the fact that R is a closed

map.  In other words, if gm are C°° diffeomorphisms in Z(/)0, such that gm —►

g C"-uniformly on compacta in \Jwu(S¡) U wsiNA = M ~ {saddles}, then the

convergence is in fact uniform on M; in particular, g is C°° and hence in the

image of F..

We restrict attention to a saddle, about which, by assumption (see [8] ),

coordinates may be chosen making / linear. In this coordinate system, there are

unique /-invariant linear subspaces E" and Es which span Rn ; the expanding and

contracting eigenspaces of the (now linear) map /. The diffeomorphisms gm,

hence the map g, leave these subspaces invariant, whereupon from Theorem 1,

8m=gm \Eu and gm =gm \ s are already uniformly convergent on compacta in

E" U Es; it follows that g\ „     . is C°°.
E    U E

Since / is linear, / = /" x f*\ Eu x Es —*■ Eu x Es. This means / com-

mutes with each g^ x g^, and therefore with gm ° (¿^ x ¿£,)_1. This sequence

is the identity along Eu U Es, and converges uniformly on all compacta to g if

and only if gm —► g uniformly on all compacta.  Hence, we may make the simpli-

fying assumption that gm - g = I on Eu U Es.

The first step is to show uniform C°-convergence.  Let gm = Sm + Um be

the coordinate expansion of gm; thus, SmiUm): R" —► EsiEu). Then f~rUmfr

= Um and /'5w/_i = Sm for every r, t E Z and every m, by the linear and

hyperbolic properties of/. Consequently, in any norm

\gjx) -gix)\ < \f-\UJ\x) - Ufix))\ + V'iSJ-'ix) - Sf-Xx))\.

If W C R" - {0} is a compact set containing fundamental regions for /"

and /*, then by uniform convergence on W, for high m, \Um - U\ + \Sm - S\<

e on W. But for x in any compact neighborhood of zero, there are numbers r, t

so fhat/'Xx) and f~*ix) are in W. The result follows from the fact that/_r

acts contractively on E" and /* contractively on Es.

The argument for convergence of the higher derivatives is more delicate:

we observe that Dkf = 0 for k > 2 if is linear). Then by applying the chain rule

if = Df isa constant linear map)

(**) iDf)rDkgJx)iDf x..._x Df)-" = Dkgjfrx)

k

for all k, r, m, x.  This equation is in fact the rth iteration of the linear operator

KA) = Df o A o iDf x . . . x Df)~l operating on ¿^m the space of symmetric
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¿-multilinear maps.  If Lkym =LU @LS ®LC is the decomposition into eigen-

spaces for F for the eigenvalues of absolute value > 1, < 1, and = 1 respectively,

then the argument used in the C° case above may be applied to show that the

Lu and Ls components of L^cGm - DkG tend to zero as x —► 0.  It remains to

settle the component on Lc. Note that for F\ c, with a norm on Lkym, \Fr\ <

p(r) for some polynomial p.

We claim that Gm has infinite contact with the identity along E" U E".

If x G Es, we see that Fr(L^fm(x)) —*■ L^g^O) as r —► «. For a linear map,

this can only happen for a fixed point, and so />fcg£, is constant along Es (sim-

ilarly, £"", using F~x).  In fact, for every k > 1, £^¿£,(0) = 0, since, any jet Jk

commuting with the linear map /= £>/„, satisfies Jk = Jx by the assumption

X,. ¥= flX"'. But gm =1 ¡long E" and Es (by the simplifying assumption above),

and this implies that Jx = I: this proves the claim.

We can now show that (gm) is uniformly convergent on compacta. By (**),

for the Lc component, we have

\Dkgm(x) - Dkg(x)\ = \F-r(Dkgm(f(x))) - F-'(Dkg(f(x)))\

<p(r)\Dkgm(fr(x)) -lT-g(fr(x))\

<p(rX\Dk(gm -g)(fr(x))-Dk(gm -g)(z)\ + [Dk(gm -g)(z)\).

For any x in a small compact neighborhood of 0, there is r such that

f(x) E W, then z E E" may be chosen to minimise the distance between f(x)

and Eu. By the preceding, Dk(gm - g)(z) = 0.  Now applying the Mean Value

Theorem, where \A\W denotes supremum on W,

&(gm - g)if\x)) - Dk(gm - g)(z)\ < \Dk+ l(gm - ¿Ogrix) - z\ const Xr

for some 0 < X < 1.

Since exponential convergence still dominates polynomial convergence, this com-

pletes the proof. gm is for each k, Ck-uniformly convergent on compacta, R is

a closed map, and g is a C°° diffeomorphism.
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