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ABSTRACT. It is shown that if F is a hyperbolic contraction of R",
coordinates may be chosen so that not only is F a polynomial mapping, but
so is any diffeomorphism which commutes with F. This implies an identity
principle for diffeomorphisms Gl and 62 commuting with an arbitrary Morse-
Smale diffeomorphism F of a compact manifold M: if Gy, Gy € Z(F), then
G, = G, on an open subset of M = Gy =Gyon M

Finally it is shown that under a certain linearisability condition at the
saddles of F, Z(F) is in fact a Lie group in its induced topology.

Introduction. Let fbe a C™ diffeomorphism of R" onto itself which fixes
the origin, and let Df;: R" — R" be its first derivative at 0. We shall describe
fas asink on R" if it is hyperbolic and a topological contraction: i.e., (i) every
eigenvalue A of Df, satisfies Al < 1 and (ii) M- ,/™(U) = {0} for any bounded
set U containing the origin. The k-jet of f, denoted f,, is an element of L¥(n),
the group of k-jets of local diffeomorphisms of R" which preserve the origin.
We denote by L™ (n) the group of formal power series; L (n) = inv lim L*(n).
The theorem of K.-T. Chen and S. Stemberg [2], [7] applied to sinks, implies
that there is k¥ (computed from the eigenvalues of Df,) such that the germ of
[ is conjugate by a C* diffeomorphism germ g, to some L¥-conjugate of fer
[y thus

)] g~ =5,
We describe the normal form :f—k in §2. Two sinks f and & are conjugate if and
only if f, and A, are conjugate in L™ (n).

It is our purpose to show that the space of diffeomorphisms commuting
with f admits a finite dimensional parametrisation. The first main result is

THEOREM 1. Let h be any local diffeomorphism of R" such that fh =
Hfy. Then h=h,.

An obvious corollary is that conjugating functions g in equation (I) are
unique up to elements of the centraliser in L¥(n) of fk.

The theorem is a generalisation of a corresponding theorem of N. Kopell
[3] in which fk = fl , i.e., fis linearisable. Thus by an argument in her paper,
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there follows an identity principle for a sink, or for that matter, for a C~
Morse-Smale diffeomorphism of a compact C*”-manifold M without boundary.
(For definitions, see [6].)

COROLLARY 1. If g, and g, both commute with f, and if U is an open
set of R"(M), then g, =g, on U implies g, = g,.

A second corollary may be adduced which describes the space of solutions
to the equation [X, Y] = 0, where X and Y are C* vector fields on R", and
the flow ¢, generated by Y consists of hyperbolic sinks.

COROLLARY 2. Let Y be a vector field germ such that Y is an elementary
contracting critical point: i.e., the eigenvalues u of DZ,, satisfy Re(u) < 0. Let
B()={XI|[X, Y] =0}. Then B(Y) is the Lie algebra of Z($1) the centraliser
in L¥(n) of ¢, (k chosen as above).

In order to prove the theorem, we give in §2 a normal form fk for f; it
is related to the real Jordan form which the matrix f; has in a certain faithful
linear representation of L¥(n). The jet [y is an invariant of C*-conjugacy of
sinks. Indeed, using the representation one can give an alternative proof of the
formal content of Sternberg’s theorem.

The second main result is an extension of Theorem 1 to Morse-Smale dif-
feomorphisms. To a Morse-Smale diffeomorphism f, and to an orbit {x, f(x),
<o o5 M)} in Q(f), there is associated the spectrum of D(f™),. At least
one such orbit is a sink, for which all the eigenvalues of D(f™), have absolute
value less than 1. A source for f is a sink for f~! and any other point of
f) is called a saddle.

Now let Diff ”(M) denote the topological group of C* diffeomorphisms
of a compact manifold M, topologised by the C* topology (see, for example
[5]). Diff™ (M) contains Z(f) = {g € Diff(M)lgf = fg} as a closed subgroup.

THEOREM 2. Suppose f is a Morse-Smale diffeomorphism such that at

each saddle y,
n
an n# TN,
=11

where if m is the period of f on y, \; are the eigenvalues of D(f™ )y» m; are
nonnegative integers, and there is j # i with m; # 0. Then as a topological
group Z(f) is equivalent to a Lie group.

In a subsequent paper we prove that generically Z(f) is in fact discrete;
such f cannot, for example, be a time-one map for a C* vector field.

This paper was developed from part of my Ph.D. thesis at the University
of California at Berkeley; I would like to particularly thank my supervisor
M. Hirsch for his encouragement and help.
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1. Preliminaries. We shall adopt some notations of [4], which we briefly
recall. C”(R"™) denotes the local ring of C* mapping germs at the origin and
M its maximal ideal. Analogously, let N be the ideal in R[x,, ..., x,] of
polynomials without constant term. N is generated as a real vector space by the
monomials—we denote the monomial xill e xip by xT, where I'= (i, ..., i,)
is an ordered n-tuple of nonnegative integers. Forsuch 7, I' =i,;!...i,!and
deg/=i; +...+i,. We shall need the fact that there is a canonical identi-
fication of N with =2, O'V (where O'V denotes the ith symmetric power of
V =~ R™) under which monomials in x are identified with monomials in the
standard basis of V.

The Taylor homomorphism j,: M —> N is defined by

adeg I

f
in= Zﬁ —5;,—(0)x’,

the sum being over all 7 with 1 < deg/ <k. As is well known, j, induces an
isomorphism M/M¥*! =~ N/N**1, this quotient being denoted J ¥(n, 1), the ring
of k-jets of vanishing real C* functions. Having introduced N, we may speak of
“complex k-ets™: these are elements of N/N¥*! when N is the ideal of complex
polynomials in n-variables without constant term. J*(n, n) =J*(n, 1) ® R" is
the space of k-jets of functions R” to R™ and L¥(n) C J*(n, n) the group of
jets invertible for the operation of composition.

There is a right linear action of L¥(n) on J*(n, 1) defined by x! - g =
ik(g’) where g = (gy, ..., &,) isin L¥(n). In the basis of monomials, g has
the matrix G,; = coefficient of g on x!. Hence by sending g to the adjoint of
the linear map Gy, there is obtained a representation p,: L¥(n) — GL(J*(n, 1)).
The matrix of p,(g), in the basis of monomials, is G;; = coefficient of g/ on x.

The indices 7, J range over all monomials in n variables of degree not greater
than k.

The following facts are easy to see.

(@) py is faithful (and presents L¥(n) as an algebraic group).

(i) If deg I =1 =deg J, (0,(8));; is the Jacobian matrix of g, j,(g) =
Dg,. Moreover, if 1 <r <k and deg I =r = deg J, (p,(g)),; is the matrix of
Dge ...o Dg: 0"V — OV (in the basis of monomials). This implies that the
eigenvalues of p, (g) are all monomials X’ of degree < k in the eigenvalues 1LV
<+ +» N, } of Dg,.

(iii) If fis a diffeomorphism of R", and if deg / = 1, deg J =r < k, then
P (fi);s is the matrix of D’f: O'V —> V taken in the basis {/!x’|deg J = r}.

2. Normal forms of diffeomorphisms. 1-jets. Let A be a real linear oper-
ator. Then there is a basis {z, Z;, . . ., 2,, Z,, Wy, 41, - . ., W,} of C" in which
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the matrix of 4 is in Jordan form: if z; is a (generalised) eigenvector for A, so
is Z; for X, and w; are the real eigenvectors. By the real Jordan form of 4, we
mean the matrix which A takes in the basis {Re(z,), Im(z,), . . ., Im(z,),

Woypgqse oWyl

EXAMPLE.
ReA Im2A 1 0 A010
—Im\ Red 0 1 J_[o X o011
0 0 ReA ImA 0 0AO
0 0 —InX ReX 0 0 0 X

Notice that there is an involution z; <= Z; of the basis of C™ which in-
duces a corresponding involution ¢ of the monomials, which we denote by 2!
«— 270 If
7y ip—iy 29D = zil 2 =y

L B T W, 12y -2,

I = zil'Z

Complex jets. A complex k-jet or formal power series (%-jet) F is in
normal form providing

@® p,(F,) is in Jordan normal form,

(ii) p,(F,) is upper triangular fork =>r > 1,

(i) (o, (F); #0=>N=X.

Real jets. A real k-jet or formal power series F is in normal form provid-
ing:

() p,(F,) is in real Jordan normal form, so there is a matrix 4, being
a sum of blocks (} _}) so that 4,p,(F,)47 " = Jordan form of p,(F,).

(ii) The complex power series AIF,A{l is in normal form for each k =
r=1.
It follows from (ii) that (4,);; = () (1y0(sy> and conversely, if this con-
dition is satisfied for a complex formal power series or jet A, the eigenvalues
of whose linear part occur in conjugate pairs, then 4, is derived from a real
f.p.s. via conjugation by A4, (see [1]).

A diffeomorphism germ is in normal form if its associated formal power
series is in real normal form.

ReMARKS. (1) The normal form is a conjugacy invariant of formal power
series or jets, or diffeomorphisms, but it need not be unique. For instance, if
A # 1 is real, the 3jets

F(x, y, 2) = (v, A%y + x2, 032 + xy + x3),
G(x, y, 2) = (\x, N2y + x2, 03z + xp)

are distinct normal forms which are conjugate in L3(3), by I + (0, x2, 0).
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(2) The matrix p,(F,) will in general not be in Jordan form for k > 1.
The following lemma is a generalisation of a lemma of Sternberg [7].

LEMMA. For any (real) invertible FPS F,, there is a (real) invertible FPS
G with GF,G~" in (real) normal form.

Proor. We construct G = lim G, by induction on k. If k = 1, this is the
familiar real Jordan normal form theorem for the Jacobian F;. For the inductive
step, we observe that if p, (F}) is in (real) normal form, so is pg ;. ,(F). (Any
entry (f%, x7) of p, .., (F,) satisfies ¢fT, x”y = =(fT1, x71)(f"2, x”2) where
the sum is over all monomials f71f'2 = f and x”1x’2 = x’. By inductive hy-
pothesis, some summand can be nonzero only when A1 =21 apd a2 = )2,
in which event AY = X’. As before, Af denotes a monomial in the eigenvalues
of F,.)

It follows that if G, is chosen so that p,(G,F,Gy ") is in (real) normal
form, then p; , (G, F 101?1) will be in (real) normal form except possibly for
entries f;; with deg i = 1, deg J =k + 1. (These entries represent the contribu-
tion of D*F: 0¥V — V) Dividing up

r k+1
s =4 g M M
M2 1<r<k+1 Mr‘l-l Mk+2

we see that p, . ,(F.) has, in this decomposition, the form

A B D
X=1]10 C
00

DR

where

oo xn
©aw
T o

is in normal form. A is the Jacobian and F is its symmetric power of degree
(k + 1). Conjugating X by a matrix

~
1
o O~

0
I
0

~ o Q

we obtain D — AG + GF in the top right-hand corner.
To prove the lemma is to solve (D — AG + GF),;; = 0 when N# N e,

Dy =ZA;Gix —ZGxFy,with 1 <j<nanddegK =k + 1.
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Using the assumption that p, , ,(F;) is upper triangular (as a complex
matrix), this equation becomes

* D; =G, A, - F;)+ Z Ai'G Z GxKF KJ*

Supposing G; iy is known forj <i, G;g for K <J, we may solve inductively for
Gy when Ay # Fyy (ie. N # X)),

To prove the statement for real jets, we must know that the basis change
taking F, into its real Jordan form takes some real jet into Y. According to
Birkhoff [1], the condition that this be so is that ¢f, x”) = (°D, x5y, where
the involution ¢ on monomials is defined as above. It is clear in equation (*)
that if D, A4, F satisfy the condition, G will satisfy it by the same induction when
N # X; and otherwise the choice of G, ;7 = 0 also satisfies the condition.

REMARKS. (1) The lemma above constitutes the formal content of the
theorem of Chen and Sternberg as in [2], [7] and [8], in the sense that by
choosing a diffeomorphism with G, as above, we may conjugate F by G to a
diffeomorphism whose jet is in normal form. The analytic content is then to
prove that two C™ hyperbolic diffeomorphisms with the same normal form are
C*-conjugate.

(2) If N # N for any monomial M of degree > 1, the normal form is
linear, whereupon F is C* conjugate to a linear map.

(3) If Fis a sink (source), there is k such that N = N = deg I <k, so
that the normal form of F is a k-jet, to which F is C*-conjugate.

3. Centralisers. The crucial observation of this section is that if L: V— V
is a linear map, and if ¥ = Z V] is its decomposition into generalised eigenspaces,
then if LM = ML, each V; is M-invariant. Applying this fact to p,(F}) in normal
form, if G, is a commuting jet, then p,(G,) also has the property p,(Gy);y # 0
= A = ; although of course it need not be upper triangular. Furthermore, if
F, is a contraction and k is not less than the maximal degree on the right-hand
side of relations A = X, then if G,, commutes, G, = G, =G, ,, forall7. In
particular, Fi ! (or G ') coincides with the inverse of F, in L™(n), and so the
polynomial mappings F, F_ 1 G, G;! are globally defined diffeomorphisms
of R".

The theorem is an application of the following

LeMMA. Let F), be a contracting jet in normal form with k as above. Con-
sidered as a polynomial diffeomorphism of R", for x, y in a compact K C R",
we have

1) IF7™(x) — F ™)) < pm)\¥™ |x - yl,
)] IF(x) = FO) < q(mu*™ ix — yl,



CENTRALISERS OF C” DIFFEOMORPHISMS 103

where p, q are polynomials; \™! = smallest eigenvalue of F,, u = largest eigen-
value of F,.

Proor. We prove (1). Let a: ¥ —> S*V be defined by x — x7; i.e., if
{e} is a basis of V and the symmetric products of these vectors are denoted e”,
then the coefficient of a(x) on e’ is x . Clearly a has a uniform Lipschitz con-
stant on K.

If m is the projection S¥V — V, then FJ"(x) = m o p(F,)™ o a(x) for any
m € Z, because F} is in normal form. Hence

o p(Fr™) o alx) = mo p(F™) o a)l < Il lo(F. ™)l le(x) — a(»)
< constlp(F,) ™™ [k — yl.

We may write p(F,) = SU where these two linear maps commute, S is semisimple—
we may suppose diagonal—and U is unipotent. Then p(F,)~"™ =S~™U~"™ and

@)™ < IST™IUT™ | < N p(m).

REMARK. (degp) + 1 = nilpotence degree of (U — I).

ProOOF OF THEOREM 1. According to the observation at the head of this
section, with k as above, if g commutes with F,, then for all 7 < 0, p, . (2) =
Pi(8). Let g, be the polynomial diffeomorphism of degree & such that pi(g) =
p(8), then g, F; = F, g, , so that we may write gg “ =1 + h, commuting with
F,, and such that h(x) = O(x") on a small enough nexghbourhood U, of 0 (for
any r). In fact, h = 0. Since h(x) = (I + h — I)(x), we have

B < IF™ U + BF — FEmFRO)N < pmN™|(I + BF™(x) — F" (x)
< p(m)Ne™ | h(FF (x))] < p(m)Ne™ [F™ (x)|"
< const p(m)NF™ q(m) 1 ™" x|,

Choosing r and U, such that \u” < 1, and taking the limit of the right-hand side
as m —> o, we see h(x) = 0, because the exponential convergence of (\u")*™
dominates the polynomial convergence of p(m)q(m)".

4. Centralisers of Morse-Smale diffeomorphisms. In this section we prove
Theorem 2, stated in the Introduction. If p is the number of points in Q(f),
since Z(f) acts on (f), there is a homomorphism from Z(f) to S, whose kernel
contains the identity component Z(F),: we show Z(F), is a Lie group Moreover,
we may suppose £(f) consists of fixed points because Z(f) C Z(f") for any r.

If {S;} are the sources in Q(f) and {N;} the sinks, we may choose coordi-
nates for their unstable and stable mamfolds, w¥(S;) and w’(N ), so that fis in
normal form, and there are Lie groups G; = Z(fl Wi (s )), G; = Z(f| W, )) Then
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if g € Z(f) acts trivially on §(f), g leaves invariant the w"(S;) and w“'(Ni), and
so glw,, D €G, glw vy € G;. Hence there is defined a homomorphism

R: Z(f)y — I, ;G; x G;.

By the identity principle this is injective, and it is continuous for the C*
topology on Z(f),. The conclusion will follow from the fact that R is a closed
map. In other words, if g,, are C*™ diffeomorphisms in Z(f),, such that g,, —
& C”-uniformly on compacta in Uw“(Si) U w'(V;) = M ~ {saddles}, then the
convergence is in fact uniform on M; in particular, g is C* and hence in the
image of R.

We restrict attention to a saddle, about which, by assumption (see [8]),
coordinates may be chosen making f linear. In this coordinate system, there are
unique f-invariant linear subspaces £ and E* which span R"; the expanding and
contracting eigenspaces of the (now linear) map f. The diffeomorphisms g,,,,
hence the map g, leave these subspaces invariant, whereupon from Theorem 1,
8m =&m|u and &, = g,,|, s are already uniformly convergent on compacta in
E* U E*; it follows that glE“UES is C™.

Since f is linear, f = f* x f5: E¥ x ES — E* x E®. This means f com-
mutes with each g); x g}, and therefore with g,, o (g% x g5,)~!. This sequence
is the identity along E¥ U E*, and converges uniformly on all compacta to g if
and only if g,, — g uniformly on all compacta. Hence, we may make the simpli-
fying assumption that g,, =g =1 on E* U E®.

The first step is to show uniform C%convergence. Let g, =S, + U, be
the coordinate expansion of g,,,; thus, S,,(U,,): R" — ES(E*). Then f~" U,f"
=U, and f'S, f~* =S, forevery r, t €Z and every m, by the linear and
hyperbolic properties of f. Consequently, in any norm

lg,, () — 80 < I (U, £70) = UG + 1F5(S,,, £ ~10e) = S~ Gyl

If W C R™ — {0} is a compact set containing fundamental regions for f*
and f°, then by uniform convergence on W, for high m, |U,, — Ul + IS, — SI <
€ on W. But for x in any compact neighborhood of zero, there are numbers 7, ¢
so that f"(x) and f~*(x) are in W. The result follows from the fact that f~"
acts contractively on E¥ and f* contractively on ES.

The argument for convergence of the higher derivatives is more delicate:
we observe that D¥f = 0 for k > 2 (f is linear). Then by applying the chain rule
(f = Df is a constant linear map)

(++) (DfY D*g,,(X)(Df x ... x Dfy~" =D*g_(f"x)
k

for all k, , m, x. This equation is in fact the rth iteration of the linear operator
FA)=DfoA o (Df x ...x Df)~" operating on L  the space of symmetric
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k-multilinear maps. If Lfym =L" ® L® ® L is the decomposition into eigen-
spaces for F for the eigenvalues of absolute value > 1, <1, and = 1 respectively,
then the argument used in the C° case above may be applied to show that the
L* and L* components of D¥G,, — D¥G tend to zero as x —> 0. It remains to
settle the component on L°. Note that for F| Lo with a norm on L;‘ym, IF'| <
p(r) for some polynomial p.

We claim that G,, has infinite contact with the identity along E* U E®.
If x € ES, we see that F"(D¥gC, (x)) — D¥g£,(0) as r — oo. For a linear map,
this can only happen for a fixed point, and so D¥gf, is constant along E* (sim-
ilarly, E, using F~!). In fact, for every k > 1, D¥g%,(0) = 0, since, any jet J,,
commuting with the linear map f = Df,,, satisfies J, =J, by the assumption
N#F l'[)\,'.'f. But g, =1 along E¥ and E° (by the simplifying assumption above),
and this implies that J, = I this proves the claim.

We can now show that (g, ) is uniformly convergent on compacta. By (*+),
for the L° component, we have

ID"g,,(x) — D¥eg(x)| = IF~"(D¥g,, (f" (<) — F~" (D g(f )
< p(ID¥,,(f () — D*e(F (x)
<p(r)(ID*E,, - &)f') — D*(,, - &I + D", - ).

For any x in a small compact neighborhood of 0, there is r such that
f(x) € W, then z € E* may be chosen to minimise the distance between f”(x)
and E*. By the preceding, D"(gm — 8)(z) = 0. Now applying the Mean Value
Theorem, where |4],, denotes supremum on W,

D (g,, - &Xf'(x)) — D*(g,, — &)2)| < ID**'(g, - &), If"(x) — z| const X"

for some 0 <A <1.

Since exponential convergence still dominates polynomial convergence, this com-
pletes the proof. g, is for each k, C*.uniformly convergent on compacta, R is
a closed map, and g is a C* diffeomorphism.
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