Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sobolev inequalities for weight spaces and supercontractivity


Author: Jay Rosen
Journal: Trans. Amer. Math. Soc. 222 (1976), 367-376
MSC: Primary 46E35
DOI: https://doi.org/10.1090/S0002-9947-1976-0425601-7
MathSciNet review: 0425601
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $\phi \in {C^2}({{\mathbf {R}}^n})$ with $\phi (x) = a|x{|^{1 + s}}$ for $|x| \geqslant {x_0},a,s > 0$, define the measure $d\mu = \exp ( - 2\phi ){d^n}x$ on ${{\mathbf {R}}^n}$. We show that for any $k \in {{\mathbf {Z}}^ + }$ \[ \begin {array}{*{20}{c}} {\int {|f{|^2}|\lg (|f|){|^{2sk/(s + 1)}}d\mu } } \hfill \\ { \leqslant c\left \{ {\sum \limits _{|\alpha | = 0}^k {\left \|{D^\alpha }f\right \|_{{L_2}(d\mu )}^2 + \left \|f\right \|_{{L_2}(d\mu )}^2 \bullet |\lg (\left \|f\right \|_{{L_2}(d\mu )}){|^{2sk/(s + 1)}}} } \right \}} \hfill \\ \end {array} \] As a consequence we prove ${e^{ - t{\nabla ^\ast } \cdot \nabla }}:{L_q}({{\mathbf {R}}^n},d\mu ) \to {L_p}({{\mathbf {R}}^n},d\mu ),p,q \ne 1,\infty$, is bounded for all $t > 0$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35

Retrieve articles in all journals with MSC: 46E35


Additional Information

Article copyright: © Copyright 1976 American Mathematical Society