Interposition and lattice cones of functions
HTML articles powered by AMS MathViewer
- by Jörg Blatter and G. L. Seever
- Trans. Amer. Math. Soc. 222 (1976), 65-96
- DOI: https://doi.org/10.1090/S0002-9947-1976-0438094-0
- PDF | Request permission
Abstract:
A lattice cone of functions on a set X is a convex cone of bounded real-valued functions on X which contains the constants and which is closed under the lattice operations. Our principal results concern the relation between closed lattice cones on a set X and certain binary relations, called inclusions, on the power set of X. These results are applied to interposition problems, Császár compactifications of quasi-proximity spaces, the compactification of Nachbin’s completely regular ordered topological spaces, and a problem in best approximation.References
- Jörg Blatter, Grothendieck spaces in approximation theory, Memoirs of the American Mathematical Society, No. 120, American Mathematical Society, Providence, R.I., 1972. MR 0493107
- J. Blatter and G. L. Seever, Interposition of semi-continuous functions by continuous functions, Analyse fonctionnelle et applications (Comptes Rendus Colloq. d’Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972) Actualités Sci. Indust., No. 1367, Hermann, Paris, 1975, pp. 27–51. MR 0435793
- J. Blatter and G. L. Seever, Inclusions, interposition and approximation, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 257–261. MR 0333531 —, Quasi-proximities and order compactifications, Notices Amer. Math. Soc. 20 (1973), A-594. Abstract #73T-G122. A. Calder, Proximity algebras, Carleton Math. Ser., no. 44, Carleton University, Ottawa, Canada.
- Ákos Császár, Foundations of general topology, A Pergamon Press Book, The Macmillan Company, New York, 1963. MR 0157340
- C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951), 219–224. MR 43446, DOI 10.4153/cjm-1951-026-2
- V. A. Efremovič, Infinitesimal spaces, Doklady Akad. Nauk SSSR (N.S.) 76 (1951), 341–343 (Russian). MR 0040748
- V. A. Efremovič, The geometry of proximity. I, Mat. Sbornik N.S. 31(73) (1952), 189–200 (Russian). MR 0055659
- M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85–91. MR 50264, DOI 10.4064/fm-38-1-85-91
- M. Katětov, Correction to “On real-valued functions in topological spaces” (Fund. Math. 38 (1951), pp. 85–91), Fund. Math. 40 (1953), 203–205. MR 60211, DOI 10.4064/fm-40-1-203-205
- B. R. Kripke and R. B. Holmes, Approximation of bounded functions by continuous functions, Bull. Amer. Math. Soc. 71 (1965), 896–897. MR 182702, DOI 10.1090/S0002-9904-1965-11433-1
- Bernard Kripke and Richard Holmes, Interposition and approximation, Pacific J. Math. 24 (1968), 103–110. MR 221178, DOI 10.2140/pjm.1968.24.103
- Ernest Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361–382. MR 77107, DOI 10.2307/1969615
- Leopoldo Nachbin, Topology and order, Van Nostrand Mathematical Studies, No. 4, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1965. Translated from the Portuguese by Lulu Bechtolsheim. MR 0219042
- A. Pełczyński, A generalisation of Stone’s theorem on approximation, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 105–107, X (English, with Russian summary). MR 0086166
- William J. Pervin, Quasi-proximities for topological spaces, Math. Ann. 150 (1963), 325–326. MR 151936, DOI 10.1007/BF01470761 F. Riesz, Stetigskeitsbegriff und abstrakte Mengenlehre, Atti del IV Congresso Intern. dei Matem., Roma, 1908, v. 11, Rome, 1909, pp. 18-24.
- Yu. Smirnov, On proximity spaces in the sense of V. A. Efremovič, Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 895–898 (Russian). MR 0055660
- Yu. M. Smirnov, On proximity spaces, Mat. Sbornik N.S. 31(73) (1952), 543–574 (Russian). MR 0055661
- Eugene F. Steiner, The relation between quasi-proximities and topological spaces, Math. Ann. 155 (1964), 194–195. MR 163278, DOI 10.1007/BF01344159
- M. H. Stone, Boundedness properties in function-lattices, Canad. J. Math. 1 (1949), 176–186. MR 29091, DOI 10.4153/cjm-1949-016-5 H. Tong, Some characterizations of normal and perfectly normal spaces, Bull. Amer. Math. Soc. 54 (1948), 65.
- Hing Tong, Some characterizations of normal and perfectly normal spaces, Duke Math. J. 19 (1952), 289–292. MR 50265
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 222 (1976), 65-96
- MSC: Primary 46E05; Secondary 54E05, 41A65
- DOI: https://doi.org/10.1090/S0002-9947-1976-0438094-0
- MathSciNet review: 0438094